Advertisement

Régions d'arrêt, localisations et prolongements de martingales

  • R. Cairoli
  • J. B. Walsh
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Burkholder, D.L.: Martingale transforms. Ann. Math. Statist.37, 1494–1504 (1966)Google Scholar
  2. 2.
    Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math.134, 111–183 (1975)Google Scholar
  3. 3.
    Cairoli, R., Walsh, J.B.: Martingale representations and holomorphic processes. Ann. Probability5, 511–521 (1977)Google Scholar
  4. 4.
    Cairoli, R., Walsh, J.B.: Prolongements de processus holomorphes. Cas «carré intégrable». Séminaire de probabilités XI. Lecture Notes No. 581, 327–339. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  5. 5.
    Cairoli, R., Walsh, J.B.: Some examples of holomorphic processes. Séminaire de probabilités XI. Lecture Notes No. 581, 340–348. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  6. 6.
    Cairoli, R., Walsh, J.B.: On changing time. Séminaire de probabilités XI. Lecture Notes. No 581, 349–355. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  7. 7.
    Cairoli, R.: Une représentation intégrale pour les martingales fortes. Séminaire de probabilités XII. Lecture Notes No. 649, 162–169. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  8. 8.
    Chung, K.L.: On the fundamental hypotheses of Hunt processes. Istituto di alta matematica, Sympos. Math. IX, 43–52 (1972)Google Scholar
  9. 9.
    Dellacherie, C., Meyer, P.A.: Probabilités et potentiel, Paris: Hermann 1975Google Scholar
  10. 10.
    Doléans, C.: Variation quadratique des martingales continues à droite. Ann. Math. Statist.40, 284–289 (1969)Google Scholar
  11. 11.
    Gundy, R.F., Varopoulos, N.Th.: A martingale that occurs in harmonic analysis. Ark. Math.14, 179–187 (1976)Google Scholar
  12. 12.
    Merzbach, E.: Stopping for two-dimensional stochastic processes. Technical Report, Ben Gurion Univ. of the Negev (1976)Google Scholar
  13. 13.
    Merzbach, E.: Predictability and extension of the stochastic integral in the plane. Technical Report, Ben Gurion Univ. of the Negev (1976)Google Scholar
  14. 14.
    Métraux, C.: Quelques inégalités pour martingales à paramètre bidimensionnel. Séminaire de probabilités XII. Lecture Notes. No. 649, 170–179. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  15. 15.
    Meyer, P.A.: Intégrales stochastiques I. Séminaire de probabilités I. Lecture Notes. No. 39, 72–94. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  16. 16.
    Millar, P.W.: Martingale integrals. Trans. Amer. Math. Soc.133, 145–166 (1968)Google Scholar
  17. 17.
    Walsh, J.B.: A property of conformal martingales. Séminaire de probabilités XI. Lecture Notes No. 581, 490–492. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  18. 18.
    Wong, E., Zakai, M.: Martingales and stochastic integrals for processes with a multi-dimensional parameter. Z. Wahrscheinlichkeitstheorie verw. Gebiete29, 109–122 (1974)Google Scholar
  19. 19.
    Wong, E., Zakai, M.: Weak martingales and stochastic integrals in the plane. Ann. Probab.4, 570–586 (1976)Google Scholar
  20. 20.
    Wong, E., Zakai, M.: An extension of stochastic integrals in the plane. Ann. Probability5, 770–778 (1977)Google Scholar
  21. 21.
    Wong, E., Zakai, M.: The sample function continuity of stochastic integrals in the plane. Ann. Probability5, 1024–1027 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. Cairoli
    • 1
    • 2
  • J. B. Walsh
    • 1
    • 2
  1. 1.Département de mathématiquesÉcole polytechnique fédéraleLausanneSuisse
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations