Journal of Statistical Physics

, Volume 13, Issue 6, pp 473–490 | Cite as

A study of self-organizing processes of nonlinear stochastic variables

  • K. Kometani
  • H. Shimizu


A general theory is given for the time evolution of nonlinear stochastic variables a(t) = {ai(t)} whose statistical distribution is changing due to the self-organization of “macroscopic” order. The dynamics of a(t) is conveniently expressed by self-consistent equations for the ensemble average x(t) = 〈a(t)〉, the supersystem, and for the deviations ξ(t) = a(t)−x(t), the subsystem; the systems are connected to each other by feedback loops in their dynamics. The time dependence of the variance and the correlation function ofξ(t) are studied in terms of relaxation toward local equilibrium underx(t) and dynamical coupling withx(t). A special example shows that the stochastic motions of subsystems are pulled together by the motion of the supersystem through feedback loops, and that this pull-together phenomenon occurs when symmetry-breaking instability exists in nonlinear systems.

Key words

Nonlinear Brownian motion self-organization feedback loop pull-together phenomenon transient state fluctuation renormalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Haken,Rev. Mod. Phys. 47:67 (1975).Google Scholar
  2. 2.
    H. Shimizu and T. Yamada,J. Theor. Biol. 49:89 (1975).Google Scholar
  3. 3.
    W. Weidlich,Collective Phenomena 1:51 (1972).Google Scholar
  4. 4.
    H. Mori,Prog. Theor. Phys. 52:433 (1974).Google Scholar
  5. 5.
    N. G. van Kampen,Can. J. Phys. 39:551 (1961).Google Scholar
  6. 6.
    R. Kubo, K. Matsuo, and K. Kitahara,J. Stat. Phys. 9:51 (1973).Google Scholar
  7. 7.
    H. Mori,Prog. Theor. Phys. 53:1617 (1975).Google Scholar
  8. 8.
    H. Mori and H. Fujisaka,Prog. Theor. Phys. 49:764 (1973).Google Scholar
  9. 9.
    H. Mori,Prog. Theor. Phys. 33:433 (1965).Google Scholar
  10. 10.
    R. Zwanzig, inProceedings of the Sixth IUPAP Conference on Statistical Mechanics, Univ. Chicago Press (1972), p. 241.Google Scholar
  11. 11.
    H. Shimizu,Prog. Theor. Phys. 52:329 (1974).Google Scholar
  12. 12.
    H. Shimizu,Prog. Theor. Phys. 48:1451 (1972).Google Scholar
  13. 13.
    K. Kawasaki,Ann. Phys. 61:1 (1970).Google Scholar
  14. 14.
    K. S. J. Nordholm and R. Zwanzig,J. Stat. Phys. 11:143 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • K. Kometani
    • 1
  • H. Shimizu
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations