Journal of Statistical Physics

, Volume 36, Issue 5–6, pp 649–663 | Cite as

Fractal structures in turbulence

  • Itamar Procaccia


We present a qualitative overview of our work on the issue of fractal structures in turbulence. We explain why fully developed turbulence is not space filling and describe how its fractal dimension can be estimated theoretically. The implications of the fractal nature of turbulence on transport processes like turbulent diffusion and on fluctuations in passive scalars are discussed. The latter affect wave propagation in turbulent media and these effects are examined. In addition we consider clouds in the atmosphere which are claimed to have fractal perimeters (or surfaces) and outline the physical reasons for this phenomenon. The fractal dimension of clouds is tied to the theory of turbulent diffusion and is computed theoretically. Indications of the road ahead are given.

Key words

Fractals turbulence passive scalars clouds wave propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Mandelbrot,J. Fluid Mech. 62:381 (1974); inTurbulence and Navier-Stokes Equation, R. Temam, ed. (Springer, Berlin, 1976).Google Scholar
  2. 2.
    U. Frisch, P. L. Sulem, and M. Nelkin,J. Fluid Mech. 87:719 (1978).Google Scholar
  3. 3.
    A. J. Chorin,Commun. Math. Phys. 83:517 (1982).Google Scholar
  4. 4.
    H. G. E. Hentschel and I. Procaccia,Phys. Rev. Lett. 49:1158 (1982).Google Scholar
  5. 5.
    H. G. E. Hentschel and I. Procaccia,Phys. Rev. A 27:1266 (1983).Google Scholar
  6. 6.
    S. Grossmann and I. Procaccia,Phys. Rev. A 29:1358 (1984).Google Scholar
  7. 7.
    S. Grossmann, I. Procaccia, and P. S. Stern, Do molecular properties affect atmospheric dispersion of vapors?,Phys. Lett., in press.Google Scholar
  8. 8.
    S. Lovejoy,Science 216:185 (1982).Google Scholar
  9. 9.
    H. G. E. Hentschel and I. Procaccia,Phys. Rev. A 29:1461 (1984).Google Scholar
  10. 10.
    A. N. Kolmogorov, C.R. Acad. Sci. (USSR) 30:301 (1941).Google Scholar
  11. 11.
    A. S. Monin and A. N. Yaglom,Statistical Fluid Mechanics (MIT Press, Cambridge, Massachusetts, 1978).Google Scholar
  12. 12.
    A. Y. S. Kuo and S. Corrsin,J. Fluid Mech. 56:477 (1972).Google Scholar
  13. 13.
    M. Nelkin,Phys. Fluids 24:556 (1981).Google Scholar
  14. 14.
    H. G. E. Hentschel and I. Procaccia,Phys. Rev. A 28:417 (1983).Google Scholar
  15. 15.
    H. Tennekes and J. L. Lumley,A Frist Course in Turbulence (MIT Press, Cambridge, Massachusetts, 1972).Google Scholar
  16. 16.
    W. Frost and J. Bitte, inHandbook of Turbulence, W. Frost and H. Moulden, eds. (Plenum, New York, 1977).Google Scholar
  17. 17.
    R. H. Kraichman,J. Fluid Mech. 62:305 (1974).Google Scholar
  18. 18.
    G. T. Csanady,Turbulent Diffusion in the Environment (Reidel, Dordrecht, Holland, 1973).Google Scholar
  19. 19.
    V. I. Takarski,The Effects of the Turbulent Atmosphere on Wave Propogation (Keter, Jerusalem, 1971).Google Scholar
  20. 20.
    L. F. Richardson,Proc. R. Soc. London Ser. A 110:709 (1926).Google Scholar
  21. 21.
    G. K. Batchelor,Proc. Cambridge Philos. Soc. 48:345 (1952).Google Scholar
  22. 22.
    K. Takayoshi and H. Mori,Prog. Theor. Phys. 68:439 (1982).Google Scholar
  23. 23.
    B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
  24. 24.
    L. F. Richardson,Beitr. Phys. Atmos. 15:24 (1929).Google Scholar
  25. 25.
    R. A. Antonia, B. R. Satyaparakash, and A. J. Chambers,Phys. Fluids 25:29 (1982).Google Scholar
  26. 26.
    H. G. E. Hentschel and I. Procaccia,Physica 8D:485 (1983).Google Scholar
  27. 27.
    D. Schertzer and S. Lovejoy, The dimension of atmospheric motions, preprint, Météorologie Nationale, Paris.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Itamar Procaccia
    • 1
  1. 1.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations