Journal of Statistical Physics

, Volume 14, Issue 6, pp 483–500 | Cite as

On the absence of diffusion in a semiinfinite one-dimensional system

  • A. Gervois
  • Y. Pomeau


For obvious reasons, the self-diffusion coefficient in bounded many-body systems must be strictly zero, provided that it is defined as the limit of 〈[R(t)−R(0)]2〉/(2td) whent grows indefinitely [d is the dimensionality,R(τ) is the position of a given particle at timeτ]. Thus, the time integral of the velocity correlation function is strictly zero. A system of hard points on a half-infinite line with a reflective wall at the origin does exhibit this property of absence of diffusion, since each particle has an average position. We study in detail the difference between the velocity correlation functions of the infinite and of the half-infinite systems.

Key words

Nonequilibrium statistical dynamics one-dimensional hard-point gas semiinfinite line self-diffusion coefficient dynamics of large systems long-time behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Lebowitz, inProceedings of the IUPAP Conference at Chicago 1971; J. L. Lebowitz and J. Sykes,J. Stat. Phys. 6:157 (1972).Google Scholar
  2. 2.
    D. W. Jepsen,J. Math. Phys. 6:405 (1965).Google Scholar
  3. 3.
    J. L. Lebowitz and J. K. Percus,Phys. Rev. 155:122 (1967).Google Scholar
  4. 4.
    J. L. Lebowitz, J. K. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).Google Scholar
  5. 5.
    O. de Pazzis,Commun. Math. Phys. 22:121 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. Gervois
    • 1
  • Y. Pomeau
    • 1
  1. 1.Centre d'Etudes Nucléaires de SaclayService de Physique ThéoriqueGif-sur-YvetteFrance

Personalised recommendations