Advertisement

Journal of Statistical Physics

, Volume 14, Issue 6, pp 469–481 | Cite as

Nonequilibrium kinetics: Exact and approximate solutions

  • Suzanne Hudson
  • John Ross
Articles

Abstract

The relaxation of an internal state distribution in the presence of an excess of an inert gas is considered. The explicit time dependence of the nonequilibrium contributions to the transition rate coefficients is approximated using the Kapral-Hudson-Ross method. The resulting solution contains cross-correlation terms which do not appear when a single reaction is considered. It is shown that the first term of a perturbation expansion of an exact formal solution gives the Kapral-Hudson-Ross solution for short times, and the Chapman-Enskog solution at long times if there is a wide separation in time scales. The Kapral-Hudson-Ross, Chapman-Enskog, and exact solutions are compared for a two-state, hard-sphere model system.

Key words

Chemical kinetics nonequilibrium statistical mechanics correlation functions Boltzmann equation Chapman-Enskog solutions inelastic relaxation projection operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Prigogine and E. Xhrouet,Physica 15:913 (1949).Google Scholar
  2. 2.
    K. Takayanagi,Progr. Theoret. Phys. (Kyoto) 6:486 (1951).Google Scholar
  3. 3.
    R. D. Present,J. Chem. Phys. 31:747 (1959).Google Scholar
  4. 4.
    J. Ross and P. Mazur,J. Chem. Phys. 35:19 (1961).Google Scholar
  5. 5.
    C. W. Pyun and J. Ross,J. Chem. Phys. 40:2572 (1964).Google Scholar
  6. 6.
    R. D. Present and B. M. Morris,J. Chem. Phys. 50:151 (1969).Google Scholar
  7. 7.
    B. Shizgal and M. Karplus,J. Chem. Phys. 52:4262 (1970);54:4345 (1971);54:4357 (1971).Google Scholar
  8. 8.
    R. Kapral, S. Hudson, and J. Ross,J. Chem. Phys. 53:4387 (1970).Google Scholar
  9. 9.
    R. W. Zwanzig, inLectures in Theoretical Physics, Vol. III, W. E. Britten, B. W. Downs, and J. Downs, eds., Interscience, New York (1961).Google Scholar
  10. 10.
    M. H. Ernst,Am. J. Phys. 38:908 (1970).Google Scholar
  11. 11.
    M. Bixon, J. R. Dorfman, and K. C. Mo,Phys. Fluids 14:1049 (1971).Google Scholar
  12. 12.
    B. Widom,J. Chem. Phys. 55:44 (1971).Google Scholar
  13. 13.
    B. Shizgal,J. Chem. Phys. 55:76 (1971).Google Scholar
  14. 14.
    B. Shizgal,Chem. Phys. 5:129 (1974).Google Scholar
  15. 15.
    J. Simons,Chem. Phys. 2:27 (1973).Google Scholar
  16. 16.
    J. C. Light, J. Ross, and K. E. Schuler, inKinetic Processes in Gases and Plasmas, A. R. Hochstim, ed., Academic Press, New York (1969).Google Scholar
  17. 17.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Cases, Cambridge University Press, London (1952).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Suzanne Hudson
    • 1
  • John Ross
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridge

Personalised recommendations