Journal of Statistical Physics

, Volume 15, Issue 1, pp 23–58 | Cite as

Asymptotic time behavior of correlation functions. III. Local equilibrium and mode-coupling theory

  • M. H. Ernst
  • E. H. Hauge
  • J. M. J. van Leeuwen
Articles

Abstract

The decay to equilibrium is discussed from a general point of view based on the assumed rapid approach to local equilibrium for well-chosen initial states. The assumption is applied to the problem of time correlation functions and it is shown that the mode-coupling formula describes the asymptotics of the so-called projected wavenumber-dependent correlation functions. The local equilibrium assumption thus provides a general basis for thet−3/2 behavior of correlation functions derived in previous papers in this series, as well as for the infinite series of correction termst−(2−Pn (n⩾ 2), withPn=2−n, and for the corresponding series of corrections of orderk3−Pn (n⩾1) to Navier-Stokes hydrodynamics.

Key words

Nonequilibrium statistical mechanics local equilibrium assumptions generalized hydrodynamics Green-Kubo formulas modecoupling formulas long-time tails 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Alder and T. E. Wainwright,Phys. Rev. A 1:18 (1970).Google Scholar
  2. 2.
    Y. Pomeau and P. Résibois,Phys. Rep. 19C:64 (1975).Google Scholar
  3. 3.
    R. Zwanzig,Ann. Rev. Phys. Chem. 16:67 (1965).Google Scholar
  4. 4.
    J. R. Dorfman and E. G. D. Cohen,Phys. Rev. Lett. 25:1257 (1970);Phys. Rev. A 6:776 (1972);12:292 (1975).Google Scholar
  5. 5.
    J. Dufty,Phys. Rev. A 5:2247 (1972).Google Scholar
  6. 6.
    M. H. Ernst and J. R. Dorfman,Physica 61:157 (1972).Google Scholar
  7. 7.
    G. F. Mazenko,Phys. Rev. A 7:222 (1973).Google Scholar
  8. 8.
    I. M. de Schepper, H. van Beyeren, and M. H. Ernst,Physica 75:1 (1974).Google Scholar
  9. 9.
    P. Résibois,Physica 70:413 (1973); P. Résibois and Y. Pomeau,Physica 72:493 (1974); M. Theodosopulu and P. Résibois,Physica 82A: 47 (1976); see also M. de Leener and P. Résibois,Bull. Ac. Roy. Belg., Cl. Sc. 60:210 (1974).Google Scholar
  10. 10.
    Y. Pomeau,Phys. Lett. 38A:245 (1972);Phys. Rev. A 7:1134 (1973).Google Scholar
  11. 11.
    M. H. Ernst and J. R. Dorfman,J. Stat. Phys. 12:311 (1975); see alsoPhys. Lett. 38A:269 (1972).Google Scholar
  12. 12.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. A 4:2055 (1971).Google Scholar
  13. 13.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. Lett. 25:1254 (1970).Google Scholar
  14. 14.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, this issue, preceding paper.Google Scholar
  15. 15.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Lett. 34A:419 (1971).Google Scholar
  16. 16.
    L. P. Kadanoff and J. Swift,Phys. Rev. 166:89 (1968); K. Kawasaki,Ann. Physics 61:1 (1970); R. A. Ferrell,Phys. Rev. Lett. 24:1169 (1970).Google Scholar
  17. 17.
    Y. Pomeau,Phys. Rev. A 5:2569 (1972).Google Scholar
  18. 18.
    D. N. Zubarev,Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York (1974), §20.Google Scholar
  19. 19.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases, 3rd ed., Cambridge Univ. Press, London (1970).Google Scholar
  20. 20.
    R. A. Piccirelli,Phys. Rev. 175:77 (1968).Google Scholar
  21. 21.
    H. Grad,Phys. Fluids 6:147 (1963).Google Scholar
  22. 22.
    E. H. Hauge,Phys. Fluids 13:1201 (1970).Google Scholar
  23. 23.
    R. Zwanzig, inLectures in Theoretical Physics, III, W. E. Brittin, B. W. Downs, and J. Downs, eds., Interscience, New York (1961).Google Scholar
  24. 24.
    R. Zwanzig, Lecture notes (unpublished), University of Maryland, 1971; J. M. J. van Leeuwen, Lecture notes (unpublished), Technological University, Delft, 1971.Google Scholar
  25. 25.
    R. Zwanzig,Phys. Rev. 124:983 (1961); R. Zwanzig, K. S. J. Nordholm, and W. C. Mitchell,Phys. Rev. A 5:2680 (1972).Google Scholar
  26. 26.
    I. M. de Schepper and M. H. Ernst, to be published; I. M. de Schepper, Thesis, Nijmegen, 1975.Google Scholar
  27. 27.
    I. M. de Schepper, H. van Beyeren, and M. H. Ernst, to be published.Google Scholar
  28. 28.
    W. W. Wood, inFundamental Problems in Statistical Mechanics, III, E. G. D. Cohen, ed., North-Holland, Amsterdam (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • M. H. Ernst
    • 1
  • E. H. Hauge
    • 2
  • J. M. J. van Leeuwen
    • 3
  1. 1.Instituut voor Theoretische FysicaRijksuniversiteitUtrechtThe Netherlands
  2. 2.Institutt for Teoretisk FysikkUniversitetet i TrondheimTrondheim-NTHNorway
  3. 3.Laboratorium voor Technische NatuurkundeTechnische HogeschoolDelftThe Netherlands

Personalised recommendations