Journal of Statistical Physics

, Volume 32, Issue 2, pp 299–312 | Cite as

Nonlinear quantum dynamical semigroups for many-body open systems

  • R. Alicki
  • J. Messer
Articles

Abstract

The notion of a nonlinear quantum dynamical semigroup is introduced, and the existence and uniqueness of solutions of the corresponding nonlinear evolution equations are studied in a more abstract framework. The construction of nonlinear quantum dynamical semigroups is carried out for two different mean-field models. First a mean-field coupling between a system of noninteracting subsystems and the bath is investigated. As examples, a nonlinear frictional Schrödinger equation and a model for a quantum Boltzmann equation are discussed. Second, a many-body system with mean-field interaction coupled to a bath is considered. Here, again, the form of the generator is derived; however, it cannot be obtained rigorously, except for some particular examples. Finally, the quantum Ising-Weiss model is briefly studied.

Key words

Quantum dynamical semigroups open systems reduced description of many-body systems mean-field models nonlinear evolution equations nonlinear frictional Schrödinger equations quantum Boltzmann equation Hartree equation Ising-Weiss model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Spohn,Rev. Mod. Phys. 53:569 (1980).Google Scholar
  2. 2.
    H. P. McKean,Proc. Natl. Acad. Sci. USA 56:1907 (1966).Google Scholar
  3. 3.
    H. P. McKean, Propagation of Chaos for a Class of Nonlinear Parabolic Equations, inLecture Series in Differential Equations, Vol. II, A. K. Aziz, ed. (Van Nostrand Reinhold, New York 1969), Sec. VII, p. 177.Google Scholar
  4. 4.
    K. Hepp and E. H. Lieb,Helv. Phys. Acta 46:573 (1973).Google Scholar
  5. 5.
    Ph. A. Martin,J. Stat. Phys. 16:149 (1977).Google Scholar
  6. 6.
    E. Buffet and Ph. A. Martin,J. Stat. Phys. 18:585 (1978).Google Scholar
  7. 7.
    G. Lindblad,Commun. Math. Phys. 48:119 (1976).Google Scholar
  8. 8.
    V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan,Rep. Math. Phys. 13:149 (1978).Google Scholar
  9. 9.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II:Fourier Analysis, Self-Adjointness (Academic Press, New York, 1975), Chap. X.13.Google Scholar
  10. 10.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. I:Functional Analysis (Academic Press, New York, 1972).Google Scholar
  11. 11.
    B. de Finetti,Ann. Inst. Henri Poincaré 1:1 (1937).Google Scholar
  12. 12.
    E. Størnier,J. Funct. Anal. 3:48 (1969).Google Scholar
  13. 13.
    R. L. Hudson and G. R. Moody,Z. Wahrscheinlichkeitstheorie verw. Gebiete 35:343 (1976).Google Scholar
  14. 14.
    E. Hewitt and L. J. Savage,Trans. Am. Math. Soc. 80:470 (1955).Google Scholar
  15. 15.
    E. B. Davies,Commun. Math. Phys. 39:91 (1974).Google Scholar
  16. 16.
    E. B. Davies,Math. Ann. 219:147 (1976).Google Scholar
  17. 17.
    G. Süssmann, Los Alamos seminar talk, July 1973, unpublished.Google Scholar
  18. 18.
    R. W. Hasse,J. Math. Phys. 16:2005 (1975).Google Scholar
  19. 19.
    K. Albrecht,Phys. Lett. 56B:127 (1975).Google Scholar
  20. 20.
    E. B. Davies,J. Stat. Phys. 18:161 (1978).Google Scholar
  21. 21.
    H. Spohn,J. Math. Phys. 19:1227 (1978).Google Scholar
  22. 22.
    R. Alicki,J. Stat. Phys. 20:671 (1979).Google Scholar
  23. 23.
    E. B. Davies and H. Spohn,J. Stat. Phys. 19:511 (1978).Google Scholar
  24. 24.
    A. Frigerio,Lett. Math. Phys. 2:79 (1977).Google Scholar
  25. 25.
    H. Spohn,Lett. Math. Phys. 2:33 (1977).Google Scholar
  26. 26.
    M. Fannes, H. Spohn, and A. Verbeure,J. Math. Phys. 21:355 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • R. Alicki
    • 1
  • J. Messer
    • 1
  1. 1.Sektion Physik, Theoretische PhysikUniversität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations