Journal of Applied Electrochemistry

, Volume 20, Issue 1, pp 145–149 | Cite as

Mass transfer in gas sparged membrane cells

  • G. H. Sedahmed
  • M. M. Naim
  • M. Y. Haridi
Papers

Abstract

Rates of mass transfer for the transfer of NaCl across a high permeability Cuprophane membrane in a gas-stirred batch dialysis cell were measured by the conductivity method. Gas sparging was found to increase the rate of mass transfer across the membrane by an amount ranging from 18 to 360% depending on the superficial gas velocity and the physical properties of the solution. The overall mass transfer coefficient was related to the superficial velocity by the equation
$$K = aV_s^{0.22} .$$

The implication of the results for industrial membrane separation processes such as dialysis and electrodialysis is discussed.

Keywords

Permeability Mass Transfer Transfer Coefficient Mass Transfer Coefficient Separation Process 

Nomenclature

A

membrane area

a, a1,a2,a3 andb

constants

C1

salt concentration at timet in compartment 1

C2

salt concentration at timet in compartment 2

C0

initial salt concentration in compartment 1

D

diffusivity of the salt

Fr

Froude number (V s 2 /lg)

g

acceleration due to gravity

l

cell current

J

mass transferJ factor (St Sc0.66)

K

overall mass transfer coefficient

K1,K2

liquid phase mass transfer coefficients

i

membrane height

P

membrane permeability

R

cell resistance

Re

Reynolds number (∂Vsl/μ)

St

Stanton number (K/Vs)

Sc

Schmidt number (ν/D)

t

time of dialysis

Vs

superficial gas velocity

V

solution volume in each compartment

ɛ

gas hold-up (void fraction)

solution density

μ

solution viscosity

ν

kinematic viscosity

θ0, θ

specific conductivity of electrolyte and electrolyte-gas dispersion respectively

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. J. S. Shen and R. F. Probstein,Ind. Eng. Chem. (Proc. Des. Dev.) 18 (1979) 547.Google Scholar
  2. [2]
    M. S. Isaacson and A. A. Sonin,Ind. Eng. Chem. (Proc. Des. Dev.) 15 (1976) 313.Google Scholar
  3. [3]
    A. A. Sonin and M. S. Isaacson,Ind. Eng. Chem. (Proc. Des. Dev.) 13 (1974) 241.Google Scholar
  4. [4]
    D. G. Thomas, W. L. Griffith and R. M. Keller,Desalination 9 (1971) 33.Google Scholar
  5. [5]
    G. Befort and G. A. Guter,Desalination 10 (1972) 221.Google Scholar
  6. [6]
    A. Solan, Y. Wingograd and U. Katz,Desalination 9 (1971) 88.Google Scholar
  7. [7]
    N. Ibl, E. Adam, J. Venczel and E. Schalch,Chem. Ing. Tech. 43 (1971) 202.Google Scholar
  8. [8]
    A. S. Gendron and V. Ettel,Can. J. Chem. Engng. 53 (1975) 36.Google Scholar
  9. [9]
    J. R. Fair,Chem. Engng. July3 (1967) 67.Google Scholar
  10. [10]
    Y. Louisi, Doctor of Engineering Thesis, TU Berlin (1979).Google Scholar
  11. [11]
    A. Steiff and P. M. Weinspach,Ger. Chem. Engng 1 (1978) 150.Google Scholar
  12. [12]
    J. R. Fair, A. J. Lambright and J. W. Andersen,Ind. Eng. Chem. (Proc. Des. Dev.) 1 (1962) 33.Google Scholar
  13. [13]
    W. F. Hart,Ind. Eng. Chem. (Proc. Des. Dev.) 15 (1976) 109.Google Scholar
  14. [14]
    W. D. Deckwer,Chem. Engng Sci. 35 (1980) 1341.Google Scholar
  15. [15]
    G. M. Sedahmed, H. A. Farag, A. A. Zatout and F. A. Katkout,J. appl. Electrochem. 16 (1986) 374.Google Scholar
  16. [16]
    G. H. Sedahmed,15 (1985) 777.Google Scholar
  17. [17]
    S. Piovano, O. N. Cavatorta and U. Bohm,J. appl. Electrochem. 18 (1988) 128.Google Scholar
  18. [18]
    O. N. Cavatorta and U. Bohm,17 (1987) 340.Google Scholar
  19. [19]
    F. A. Katkout, A. A. Zatout, H. A. Farag and G. H. Sedahmed,Can. J. Chem. Engng 66 (1988) 497.Google Scholar
  20. [20]
    G. H. Sedahmed,J. appl. Electrochem. 17 (1987) 746.Google Scholar
  21. [21]
    T. T. Shah, B. G. Kelkar, S. P. Godbole and W. D. Deckwar,AiChE J. 28 (1982) 353.Google Scholar
  22. [22]
    S. Sourirajan, ‘Reverse Osmosis’, Academic Press, New York (1970).Google Scholar
  23. [23]
    K. H. Keller, ‘Fluid Mechanics and Mass Transfer in Artifical Organs’, American Society for Artificial Internal Organs, Washington, DC (1973).Google Scholar
  24. [24]
    H. Vogt, in ‘Comprehensive Treatise of Electrochemistry’, Vol 6 (edited by E. B. Yeager, J. O'M Bockris, B. E. Conway and S. Sarangapani), Plenum Press, New York (1983) p. 445.Google Scholar
  25. [25]
    D. A. G. Bruggemann,Ann. Phys. 24 (1935) 636.Google Scholar
  26. [26]
    F. Hine and K. Murakam,J. Electrochem. Soc. 127 (1980) 292.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • G. H. Sedahmed
    • 1
  • M. M. Naim
    • 1
  • M. Y. Haridi
    • 1
  1. 1.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations