Skip to main content
Log in

Simulation of hydrodynamics and inhibitor consumption in hydrometallurgical plants

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mathematical models are presented for the consumption of the inhibitors of electrocrystallization in hydrometallurgical plants involved with the copper electrorefining and zinc electrowinning. Continuously-stirred tank reactors (CSTR) and plug flow reactors (PFR) in which first order chemical and electrochemical reactions take place are used in these models. The time dependent behaviours of the industrial plants are predicted. Tests with metallic tracers show the validity of the models. Possible uses in electrocrystallization studies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

V :

volume of a reactor (CSTR or PFR)

V′:

volumetric flow rate of the electrolyte entering the electrochemical cell

α:

ratio between the volumetric flow rate of the ‘fresh’ electrolyte fed in the holding tank and that of the electrolyte entering the electrochemical cell

n :

ratio between the volumetric flow rate of the electrolyte in the PFR located near the cathode and that entering the electrochemical cell

m :

ratio between the volumetric flow rate of the electrolyte in the PFR located between the electrodes and the cell walls (electrowinning model) and that entering the electrochemical cell

C n :

concentration of the reactant in the ‘fresh’ fed electrolyte

k:

chemical reaction rate constant

ka, kc :

electrochemical reaction rate constant

a :

ratio between the surface area of an electrode immersed in a reactor and the volume of this reactor

S :

surface area of an electrode

τ:

ratio between the volume of a reactor and its volumetric flow-rate=spacetime of the reactor

t :

time

C :

concentration

r :

rate of a chemical reaction per unit volume of reacting fluid

r″:

rate of an electrochemical reaction per unit surface area of the electrode

1 to 7:

reactor number

a:

anodic or anode

c:

cathodic or cathode

References

  1. D. J. Pickett, ‘Electrochemical reactor design’, Elsevier Amsterdam (1979).

    Google Scholar 

  2. L. H. Mustoe and A. A. Wragg,J. Appl. Electrochem. 13 (1983) 507.

    Google Scholar 

  3. R. E. White, M. Bain and Raible,J. Electrochem. Soc. 130 (5) (1983) 1037.

    Google Scholar 

  4. F. Lapicque and A. Storck,J. Appl. Electrochem. 15 (1985) 925.

    Google Scholar 

  5. K. Scott,J. Appl. Electrochem. 15 (1985) 659.

    Google Scholar 

  6. T. V. Nguyen, C. W. Walton, R. E. White and J. Van Zee,J. Electrochem. Soc. 133 (1), (1986) 81.

    Google Scholar 

  7. M. J. Mader, C. W. Walton and R. E. White,J. Electrochem. Soc. 133 (6), (1986) 1124.

    Google Scholar 

  8. T. V. Nguyen, C. W. Walton and R. E. White,J. Electrochem. Soc. 133 (6) (1986) 1130.

    Google Scholar 

  9. J. T. Mulvale and T. Z. Fahidy,Electrochim. Acta 31 (1986) 173.

    Google Scholar 

  10. P. Javet, N. Ibl and H. E. Hinterman,Galvanotechnik und Oberfl. 8 (1967) 231.

    Google Scholar 

  11. P. Javet, N. Ibl and H. E. Hinterman,Electrochim. Acta 12 (1967) 781.

    Google Scholar 

  12. P. Javet and H. E. Hinterman,Electrochim. Acta 14 (1969) 527.

    Google Scholar 

  13. A. Szymaszek, J. Biernat and L. Pajdowski,Electrochim. Acta 22 (1977) 359.

    Google Scholar 

  14. K. Tshula, Ph.D. Thesis, Université Libre de Bruxelles, Belgium (1983).

  15. H. S. Jennings and F. E. Rizzo,Met. Trans. 4 (1973) 921.

    Google Scholar 

  16. Y. Awakura and Y. Kondo,J. Electrochem. Soc. 123 (8) (1976) 1184.

    Google Scholar 

  17. Y. Awakura, Y. Takenaka and Y. Kondo,Electrochim. Acta 21 (1976) 789.

    Google Scholar 

  18. T. J. O'Keefe, J. S. Cuzmar and S. F. Chen,J. Electrochem. Soc. 134 (1987) 547.

    Google Scholar 

  19. M. Degrez and R. Winand,Electrochim. Acta 29 (1984) 365.

    Google Scholar 

  20. H. M. Wang, S. F. Chen, T. J. O'Keefe, M. Degrez and R. Winand,J. Appl. Electrochem. 19 (1989) 174.

    Google Scholar 

  21. M. Degrez, J. L. Delplancke and R. Winand, ‘Inhibitor behaviour simulation in copper electrorefining and zinc electrowinning’, AIChE Meeting, New York (1987).

  22. J. L. Delplancke, M. Degrez and R. Winand, ‘Simulation of hydrodynamics and inhibitor consumption in electrometallurgical plants’, 173rd Electrochemical Society Meeting, Altanta (May 1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degrez, M., Delplancke, J.L. & Winand, R. Simulation of hydrodynamics and inhibitor consumption in hydrometallurgical plants. J Appl Electrochem 20, 110–115 (1990). https://doi.org/10.1007/BF01012479

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012479

Keywords

Navigation