Journal of Chemical Ecology

, Volume 12, Issue 6, pp 1481–1488 | Cite as

Toxicities of host secondary compounds to eggs of theBrassica specialistDasineura brassicae

  • Inger Åhman
Article

Abstract

The toxicities of selected host secondary plant substances to eggs of theBrassica specialistDasineura brassicae were estimated in a laboratory test. Isothiocyanates (ITCs) and 1-cyano-2-phenylethane, autolysis products of glucosinolates, were more toxic than a “green leaf alcohol,”cis-3-hexen-1-ol, found in numerous plant families. The most toxic compound, 2-phenylethyl ITC, occurs in all investigatedBrassica hosts ofD. brassicae. However, the less suitableBrassica hosts additionally release comparatively large amounts of allyl ITC. This suggests that even a crucifer specialist may be restricted in its use of particular hosts due to their compositions and concentrations of glucosinolate compounds.

Key Words

Secondary compounds glucosinolate isothiocyanates toxicity Brassica Cruciferae Dasineura brassicae Diptera Cecidomylidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åhman, I. 1981. The potential of someBrassica species as host plants of the Brassica Pod Midge (Dasineurabrassicae Winn.) (Dipt., Cecidomyiidae) (In Swedish with Engl. summary).Entomol. Tidskr. 102:111–119.Google Scholar
  2. Åhman, I. 1985a. Larval feeding period and growth ofDasineura brassicae (Diptera) onBrassica host plants.Oikos 44:191–194.Google Scholar
  3. Åhman, I. 1985b. Oviposition behaviour ofDasineura brassicae on a high-versus a low-qualityBrassica host.Entomol. Exp. Appl. 39:247–253.Google Scholar
  4. Blau, P.A., Feeny, P., Contardo, L., andRobson, D.S. 1978. Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance.Science 200:1296-1298.Cole, R.A. 1976. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae.Phytochemistry 15:759–762.Google Scholar
  5. Cole, R.A. 1978. Epithiospecifier protein in turnip and changes in products of autolysis during ontogeny.Phytochemistry 17:1563–1565.Google Scholar
  6. Cole, R.A. 1980. Volatile components produced during ontogeny of some cultivated crucifers.J. Sci. Food Agric. 31:549–557.Google Scholar
  7. Cole, R.A., andFinch, S. 1978. Vapours from intact plants.Annu. Rep. Natl. Veg. Res. Stn. Wellesbourne, Engl. 1977:84.Google Scholar
  8. Delaveau, P. 1952. Contribution à l'étude du rôle physiologique due sinigroside de la Moutarde noire (Brassicanigra Koch, Crucifères)Acad. Sci. C.R. 234:460–462.Google Scholar
  9. Delaveau, P. 1958. Variations de la teneur en hétérosides à sénevol de l'Alliariaofficinalis L. au cours de la végétation.Acad. Sci. C.R. 246:1903–1905.Google Scholar
  10. Feeny, P. 1977. Defensive ecology of the Cruciferae.Ann. M. Bot. Gard. 64:221–234.Google Scholar
  11. Gland, A., Röbbelen, G., andThies, W. 1981. Variation of alkenyl glucosinolates in seeds ofBrassica species. Z.Pflanzenzüchtg. 87:96–110.Google Scholar
  12. Josefsson, E. 1967. Distribution of thioglucosides in different parts ofBrassica plants.Phytochemistry 6:1617–1627.Google Scholar
  13. Josefsson, E. 1971. Studies of the biochemical background to differences in glucosinolate content inBrassica napus L. I. Glucosinolate content in relation to general chemical composition.Physiol. Plant. 24:150–159.Google Scholar
  14. Josefsson, E. 1972. Variation of pattern and content of glucosinolates in seed of some cultivated Cruciferae.Z. Pflanzenzüchtg. 68:113–123.Google Scholar
  15. Josefsson, E., andAppelqvist, L.-Å. 1968. Glucosinolates in seed of rape and turnip rape as affected by variety and environment.J. Sci. Food Agric. 19:564–570.Google Scholar
  16. Kjaer, A. 1960. Naturally derived isothiocyanates (mustard oils) and their parent glucosides.Fortschr. Chem. Org. Naturst. 18:122–176.Google Scholar
  17. Kjaer, A. 1976. Glucosinolates in the Cruciferae, pp. 207–220,in J.G. Vaughan, A.J. MacLeod and B.M.G. Jones (eds.). The Biology and Chemistry of the Cruciferae. Academic Press, London.Google Scholar
  18. Lerin, J. 1980. Influence des substances allélochimiques des cruciferes sur les insectes.Acta Oecol./ Oecol. Gener. 1:215–235.Google Scholar
  19. Lichtenstein, E.P., Strong, F.M., andMorgan, D.G. 1962. Identification of 2-phenylethylisothiocyanate as an insecticide occurring naturally in the edible part of turnips.J. Agric. Food Chem. 10:30–33.Google Scholar
  20. Lichtenstein, E.P., Morgan, D.G., andMueller, C.H. 1964. Naturally occurring insecticides in cruciferous crops.J. Agric. Food Chem. 12:158–161.Google Scholar
  21. Louda, S.M., andRodman, J.E. 1983a. Ecological patterns in the glucosinolate content of a native mustard,Cardamine cordifolia, in the Rocky Mountains.J. Chem. Ecol. 9:397–422.Google Scholar
  22. Louda, S.M., andRodman, J.E. 1983b. Concentration of glucosinolates in relation to habitat and insect herbivory for the native cruciferCardamine cordifolia.Biochem. Syst. Ecol. 11:199–207.Google Scholar
  23. Lowe, M.D., Henzell, R.F., andTaylor, H.J. 1971. Insecticidal activity to soldier fly larvae,Inopus rubriceps (Macq.) of isothiocyanates occurring in “choumoellier” (Brassicaoleracea cv).N.Z. J. Sci. 14:322–326.Google Scholar
  24. MacLeod, A.J. 1976. Volatile flavour compounds of the Cruciferae, pp. 307–330,in J.G. Vaughan, A.J. MacLeod, and B.M.G. Jones (eds.). The Biology and Chemistry of the Cruciferae. Academic Press, London.Google Scholar
  25. Nayar, J.K., andThorsteinson, A.J. 1963. Further investigations into the chemical basis of insect-host plant relationships in an oligophagous insect,Plutella maculipennis (Curtis) (Lepidoptera: Plutellidae).Can. J. Zool. 41:923–929.Google Scholar
  26. Rodman, J.E., andChew, F.S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae.Biochem. Syst. Ecol. 8:43–50.Google Scholar
  27. Speyer, W. 1921. Beitrage zur Biologie der Kohlschotenmücke (Dasyneurabrassicae Winn).Mitt. Biol. Reichsanst. Land Forstwirtsch. 21:208–217.Google Scholar
  28. Sylvén, E. 1949. Skidgallmyggan,Dasyneura brassicae Winn. (In Swedish with Engl. summary).Meddn. St. VäxtskAnst. 54:1–120.Google Scholar
  29. Sylvén, E., andSvenson, G. 1975. Relationship between density ofCeuthorrynchus assimilis Payk. (Col.) and damage byDasineura brassicae Winn. (Cec.) in a cage experiment in summer turnip rape.Meddn. St. VäxtskAnst. 161:53–60.Google Scholar
  30. Vaughan, J.G., Hemingway, J.S., andSchofield, H.J. 1963. Contributions to a study of variation inBrassica juncea Coss & Czern.J. Linn. Soc. (Bot.) 58:435–447.Google Scholar
  31. Verschaffelt, E. 1911. The cause determining the selection of food in some herbivorous insects.Proc. K. Ned. Akad. Wet. 13:536–542.Google Scholar
  32. Visser, J.H., Straten, S. Van, andMaarse, H. 1979. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the Colorado beetle,Leptinotarsa decemlineata.J. Chem. Ecol. 5:11–23.Google Scholar
  33. Wallbank, B.E., andWheatley, G.A. 1976. Volatile constituents from cauliflower and other crucifers.Phytochemistry 15:763–766.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Inger Åhman
    • 1
  1. 1.Department of Plant and Forest ProtectionSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations