Advertisement

Journal of Chemical Ecology

, Volume 12, Issue 6, pp 1273–1284 | Cite as

Field studies on chemically mediated behavior in land hermit crabs: Volatile and nonvolatile odors

  • Dan Rittschof
  • John P. Sutherland
Article

Abstract

Land hermit crabs,Coenobita rugosis, were tested in the field in Costa Rica for behavioral responses to odors. Volatile odors associated with horse feces, fruit, and honey attracted crabs within minutes. Odors from dead gastropod flesh were not immediately attractive, but after aging, odors from a variety of flesh sources attracted crabs. Crabs fed actively upon the materials that attracted them. Feeding behavior was stimulated by components of fruit juice and fresh gastropod flesh juices of less than 10,000 daltons, honey, a 0.5 M sucrose solution, and a saturated solution of tyrosine. Twenty additional amino acid solutions tested at 0.1 M concentration were weak feeding stimulants at best. Chemical cues controlled feeding behavior, but not shell acquisition;C. rugosis were not differentially attracted to flesh odors or to living gastropods whose shells they occupied.

Key Words

Chemoreception Crustacea odors Coenobita rugosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ache, B. 1977. Aspects of chemoreception in marine crustaceans, pp. 343–350,in J. Le Magnen and P. MacLeod (eds.). Olfaction and Taste, Vol. VI. Academic Press, New York.Google Scholar
  2. Ache, B.W. 1982. Chemoreception and thermoreception, pp. 369–398,in H.L. Atwood and D.C. Sandeman (eds.). The Biology of Crustacea Neurobiology: Structure and Function. Academic Press, New York.Google Scholar
  3. Ache, B.W., Fuzessery, Z.M., andCarr, W.E. 1976. Antennular chemosensitivity in the spiny lobster,Panulirus argus: Comparative tests of high- and low-molecular-weight stimulants.Biol. Bull. 151:273–282.Google Scholar
  4. Atema, J. 1976. Sublethal effects of petroleum fractions on behavior of the lobster,Homarus americanus and the mud snail,Nassarius obsoletus, pp. 302–312,in M. Wiley (ed.). Estuar ine Processes, Vol. I, Uses, Stresses, and Adaptation to the Estuary. Academic Press, New York.Google Scholar
  5. Atema, J. 1982. Chemical senses, chemical signals, and feeding behavior in fishes, pp. 57–101,in J.E. Bardach, J.J. Magnuson, R.C. May, and J.M. Reinhardt (eds.). Fish Behavior and Its Use in the Capture and Culture of Fishes. International Center for Living Resource Management, Manila, Philippines.Google Scholar
  6. Bardach, J.E. 1975. Chemoreception in aquatic animals, pp. 121–132,in D.A. Denton and J.P. Coghlan (eds.). Fifth International Symposium on Smell and Taste. Academic Press, New York.Google Scholar
  7. Carr, W.E., andDerby, C.D. 1986. Chemically stimulated feeding behavior in marine animals, importance of chemical mixtures and involvement of mixture interactions.J. Chem. Ecol., 989–1011.Google Scholar
  8. Carter, J.A., andSteele, D.H. 1982. Attraction to and selection of prey by immature lobsters (Homarus americanus).Can. J. Zool. 60:326–336.Google Scholar
  9. Derby, C.D., andAche, B.W. 1984. Quality coding of a complex odorant in an invertebrate.J. Neurophysiol. 51:906–924.Google Scholar
  10. Derby, C.D., andAtema, J. 1982a. Chemosensitivity of walking legs of the lobsterHomarus americanus: Neurophysiological response spectrum and thresholds.J. Exp. Biol. 98:303–315.Google Scholar
  11. Derby, C.D., andAtema, J. 1982b. The function of chemo- and mechanoreceptors in lobster (Homarus americanus) feeding behavior.J. Exp. Biol. 98:317–327.Google Scholar
  12. Derby, C.D., andAtema, J. 1982c. Narrow-spectrum chemoreceptor cells in the walking legs of the lobsterHomarus americanus: Taste specialists,J. Comp. Physiol. 146:181–189.Google Scholar
  13. Derby, C.D., Reilly, P.M., andAtema, J. 1984. Chemosensitivity of lobster,Homarus americanus, to secondary plant compounds: Unused receptor capabilities.J. Chem. Ecol. 10:879–892.Google Scholar
  14. Epifanio, C.E. 1979. Effects of pollutants on larval decapods, pp. 259–292,in C.W. Hart and S.H. Fuller (eds.). Pollution Ecology of Estuarine Invertebrates. Academic Press, New York.Google Scholar
  15. Fuzessery, Z.M., Carr, W.E., andAche, B.W. 1978. Antennular chemosensitivity in the spiny lobster,Panulirus argus: Studies of taurine sensitive receptors.Biol. Bull. 154:226–240.Google Scholar
  16. Ghiradella, H., Case, J., andCronshaw, J. 1968. Fine structure of the aesthetasc hairs ofCoenobita compressus Edwards.J. Morphol. 124:361–385.Google Scholar
  17. Gilchrest, S. 1982. A critical view of hermit crab shell uses. Doctoral dissertation, University of Florida.Google Scholar
  18. Hazlett, B.A. 1971a. Chemical and chemostatic stimulation of feeding behavior in the hermit crabPetrochirus diogenes.J. Comp. Physiol. 39A:665–670.Google Scholar
  19. Hazlett, B.A. 1971b. Antennule chemosensitivity in marine Crustacea.J. Anim. Morphol. Physiol. 18:1–10.Google Scholar
  20. Hazlett, B.A. 1981. The behavioral ecology of hermit crabs.Annu. Rev. Ecol. Syst. 12:1–22.Google Scholar
  21. Kurta, A. 1982. Social facilitation of foraging behavior by the hermit crab,Coenobita compressus in Costa Rica.Biotropica 14:132–136.Google Scholar
  22. McClean, R.B. 1974. Direct shell acquisition by hermit crabs from gastropods.Experientia 30:206–208.Google Scholar
  23. McClean, R.B. 1975. A description of a marine benthic fauna habitat web. Doctoral dissertation, Florida State University. 109 pp.Google Scholar
  24. Page, H.M., andWillason, S.W. 1983. Feeding activity patterns and carrion removal by terrestrial hermit crabs at Eniwetok Atoll, Marshall Islands.Pac. Sci. 37:151–155.Google Scholar
  25. Pearson, W., andOlla, B. 1979. Detection of naphthalene by the blue crab,Callinectes sapidus.Estuaries 2:63–64.Google Scholar
  26. Pearson, W., andOlla, B. 1980. Thresholds for detection of napthalene and other behavioral responses by the blue crab,Callinectes sapidus. Estuaries 3:224–229.Google Scholar
  27. Pearson, W.H., Sugarman, P.C., Woodruff, D.L., andOlla, B.A. 1979. Thresholds for detection and feeding behavior in the dungeness crab,Cancer magister (Dana).J. Exp. Mar. Biol. Ecol. 39:65–78.Google Scholar
  28. Pearson, W.H., Miller, S.E., Blaylock, J.W., andOlla, B.A. 1981. Detection of the water-soluble fraction of crude oil by the blue crab,Callinectes sapidus.Mar. Environ. Res. 5:3–11.Google Scholar
  29. Rittschof, D. 1980a. Chemical attraction of hermit crabs and other attendants to simulated gastropod predation sites.J. Chem. Ecol. 6:103–118.Google Scholar
  30. Rittschof, D. 1980b. Enzymatic production of small molecules attracting hermit crabs to simulated gastropod predation sites.J. Chem Ecol. 6:665–676.Google Scholar
  31. Robertson, J.R., Bankroft, K., Vermeer, G., andPlaisier, K. 1980. Experimental studies on the foraging behavior of the sand fiddler crabUca pugilator (Bosc.)J. Exp. Mar. Biol. Ecol. 44:67–83.Google Scholar
  32. Robertson, J.R., Fudge, J.A., andVermer, G.K. 1981. Chemical and live feeding stimulants of the sand fiddler crab,Uca pugilator (Bosc.)J. Exp. Mar. Biol. Ecol. 53:47–64.Google Scholar
  33. Schmitt, B.C., andAche, B.W. 1979. Olfaction: Responses of a decapod crustacean are enhanced by flicking.Science 205:204–206.Google Scholar
  34. Sokal, R.R., andRohlf, F.J. 1981. Biometry, 2nd ed. W.H. Freeman, San Francisco.Google Scholar
  35. Sutterlin, A.M. 1974. Pollutants and the chemical senses of aquatic animals—perspective and review, pp. 167–178,in E. Ditor (ed.). Chemical Senses and Flavor I. D. Reidel Publishing, Dordrecht, Holland.Google Scholar
  36. Wilber, T.P., andHerrnkind, W. 1982. Rate of new shell acquisition by hermit crabs in a salt marsh habitat.J. Crust. Biol. 2:588–592.Google Scholar
  37. Wilber, T.P., andHerrnkind, W.F. 1984. Predaceous gastropods regulate new-shell supply to salt marsh hermit crabs.Mar. Biol. 79:145–150.Google Scholar
  38. Wilson, E.D. 1975 Sociobiology. Belknap Press, Cambridge. 697 pp.Google Scholar
  39. Zimmer-Faust, R.K., Tyre, J.E., Michel, W.C., andCase, J.F. 1984a. Chemical mediation of appetitive feed in a marine decapod crustacean: The importance of suppression and synergism.Biol. Bull. 167:339–353.Google Scholar
  40. Zimmer-Faust, R.K., Michel, W.C., Tyre, J.C., andCase, J.F. 1984b. Chemical induction in California spiny lobster,Panulirus interruptus (Randall): Responses to molecular weight fractions of abalone.J. Chem Ecol. 10:957–971.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Dan Rittschof
    • 1
    • 2
  • John P. Sutherland
    • 1
    • 2
  1. 1.Duke University Marine LaboratoryBeaufort
  2. 2.T. H. Curran Marine Field StationWest EsterillosCosta Rica

Personalised recommendations