Journal of Statistical Physics

, Volume 30, Issue 2, pp 457–465 | Cite as

Monte Carlo renormalization group Calculations for polymers

  • M. Muthukumar
Articles

Abstract

A simple method based on Wilson's renormalization group ideas is applied to calculate the dynamical critical exponentz for polymer chains in different dynamical regimes. It is shown that the Doi-Edwards reptating chain does not belong to the same dynamical universality class as the Rouse chain. The earlier results based on ε(4 −d, d ∼ space dimensionality) expansion for chains with excluded volume effect are recovered without any ε expansion. When combined with the Monte Carlo techniques, this method results in a simple scheme for calculating the static and dynamic exponents for a polymer chain with a prescribed dynamics. Numerical results suggest that the slithering snake model of Wall and Mandel for the dynamics is in a different dynamic universality class than the Rouse chain.

Key words

Monte Carlo renormalization group dynamical exponent polymer entanglements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a general review, see H. Yamakawa,Modern Theory of Polymer Solutions (Harper and Row, New York).Google Scholar
  2. 2.
    P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).Google Scholar
  3. 3.
    P. G. de Gennes,J. Chem. Phys. 55:572 (1971).Google Scholar
  4. 4.
    M. Doi and S. F. Edwards,J. Chem. Soc., Faraday Trans. II 74:1789, 1802, 1818 (1978);75:38 (1979).Google Scholar
  5. 5.
    P. G. de Gennes,Macromolecules 9:587 (1976).Google Scholar
  6. 6.
    D. Jasnow and M. A. Moore,J. Phys. (Paris) 38:L-467 (1978).Google Scholar
  7. 7.
    G. F. Al-Noaimi, G. C. Martinez-Meller, and C. A. Wilson,J. Phys. (Paris) 39:L-373 (1978).Google Scholar
  8. 8.
    Y. Oono and K. F. Freed,J. Chem. Phys. 75:1009 (1981).Google Scholar
  9. 9.
    J. Tobochnik, S. Sarker, and R. Cordery,Phys. Rev. Lett. 46:1417 (1981); S. Shenker and J. Tobochnik,Phys. Rev. B 22:4462 (1980).Google Scholar
  10. 10.
    M. Muthukumar (submitted to Chemical Physics).Google Scholar
  11. 11.
    M. Muthukumar and S. F. Edwards,Polymer 23:345 (1982).Google Scholar
  12. 12.
    F. T. Wall and F. Mandel,J. Chem. Phys. 63:4592 (1975).Google Scholar
  13. 13.
    J. R. Banavar and M. Muthukumar,Chem. Phys. Lett. (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • M. Muthukumar
    • 1
  1. 1.Department of ChemistryIllinois Institute of TechnologyChicago

Personalised recommendations