Advertisement

Journal of Statistical Physics

, Volume 30, Issue 2, pp 355–362 | Cite as

Diffusion in random one-dimensional systems

  • J. Bernasconi
  • W. R. Schneider
Articles

Abstract

Diffusion on the one-dimensional lattice ℤ is described by a master equation with nearest-neighbor transfer rates (symmetric or asymmetric). The transfer rates associated with bonds are assumed to be independent, equally distributed random variables. Under various conditions on their common distribution the large time behavior of averaged site probabilities and/or related quantities is exhibited.

Key words

Diffusion one-dimensional lattice master equation nearest neighbor transfer rates random variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bernasconi and W. R. Schneider,J Phys. A: Math. Gen. 15:L729 (1982).Google Scholar
  2. 2.
    W. R. Schneider,Commun. Math. Phys. 87:303 (1982).Google Scholar
  3. 3.
    W. R. Schneider and J. Bernasconi,Mathematical Problems in Theoretical Physics, R. Schrader, R. Seiler, and D. A. Uhlenbrock, eds., Springer Lecture Notes in Physics, Vol. 153 (Springer, Berlin, 1982), p. 389.Google Scholar
  4. 4.
    J. Bernasconi, W. R. Schneider, and W. Wyss,Z. Phys. B37:175 (1980).Google Scholar
  5. 5.
    B. L. J. Braaksma,Compos. Math. 15:239 (1963).Google Scholar
  6. 6.
    W. R. Schneider, unpublished.Google Scholar
  7. 7.
    M. J. Stephen and R. Kariotis,Phys. Rev. B 26:2917 (1982).Google Scholar
  8. 8.
    A. Golosov, private communication.Google Scholar
  9. 9.
    S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach,Rev. Mod. Phys. 53:175 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • J. Bernasconi
    • 1
  • W. R. Schneider
    • 1
  1. 1.Brown Boveri Research CenterBadenSwitzerland

Personalised recommendations