Journal of Statistical Physics

, Volume 10, Issue 4, pp 299–319 | Cite as

Bose-Einstein condensation in one- and two-dimensional gases

  • L. Gunther
  • Yoseph Imry
  • David J. Bergman


We show that the one- and two-dimensional ideal Bose gases undergo a phase transition if the temperature is lowered at constant pressure. At the pressure-dependent transition temperature Tc (P) and in their thermodynamic limit the specific heat at constant pressure cp and the particle densityn diverge, the entropyS and specific heat at constant volumec v fall off sharply but continuously to zero, and the fraction of particles in the ground state N0/N jumps discontinuously from zero to one. This Bose-Einstein condensation provides a remarkable example of a transition which has most of the properties of a second-order phase transition, except that the order parameter is discontinuous. The nature of the condensed state is described in the large but finiteN regime, and the width of the transition region is estimated. The effects of interactions in real one- and two-dimensional Bose systems and recent experiments on submonolayer helium films are discussed briefly.

Key words

Bose-Einstein condensation phase transition helium thin films one-dimensional systems two-dimensional systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. London,Superfluids, Dover, New York, (1954), Vol. II.Google Scholar
  2. 2.
    P. C. Hohenberg,Phys. Rev. 158:383 (1967).Google Scholar
  3. 3.
    B. Kahn, inStudies in Statistical Mechanics, Vol. III, J. de Boer and G. E. Unlenbeck eds., North-Holland, Amsterdam (1965).Google Scholar
  4. 4.
    L. Gunther, D. Bergman, and Y. Imry,Phys. Rev. Letters 27:558 (1971).Google Scholar
  5. 5.
    A. Widom,Phys. Rev. 176:254 (1968).Google Scholar
  6. 6.
    J. J. Rehr and N. D. Mermin,Phys. Rev. B 1:3160 (1970).Google Scholar
  7. 7.
    T. Matsubara and H. Matsuda,Progr. Theor. Phys. 16:416, 569 (1956).Google Scholar
  8. 8.
    M. Bretz and J. G. Dash,Phys. Rev. Letters 26:963 (1971).Google Scholar
  9. 9.
    Y. Imry, D. Bergman, and L. Gunther,Low Temperature Physics LT-13 in (Proc. 13th Int. Conf. on Low Temp. Phys., Boulder, Colorado, 1972), Plenum, New York (1973).Google Scholar
  10. 10.
    R. S. Kagiwada, J. C. Fraser, I. Rudnick, and D. Bergman,Phys. Rev. Letters 22:338 (1969).Google Scholar
  11. 11.
    R. P. Henkel, G. Kukich, and J. D. Reppy, inProc. 11th Low Temp. Phys. Conf. (1968), Vol. I, p. 178.Google Scholar
  12. 12.
    E. Lieb and D. Mattis,Mathematical Physics in One Dimension, Academic Press, New York (1966).Google Scholar
  13. 13.
    M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).Google Scholar
  14. 14.
    N. D. Mermin and H. Wagner,Phys. Rev. Letters 17:1133 (1966).Google Scholar
  15. 15.
    C. E. Campbell, J. G. Dash, and M. Schick,Phys. Rev. Letters 26:966 (1971).Google Scholar
  16. 16.
    M. Revzen,Phys. Rev. Letters 22:1102 (1969).Google Scholar
  17. 17.
    S. J. Putterman, R. Finkelstein, and I. Rudnick,Phys. Rev. Letters 27:1697 (1971).Google Scholar
  18. 18.
    J. S. Langer and Michael E. Fisher,Phys. Rev. Letters 19:560 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • L. Gunther
    • 1
    • 2
    • 3
  • Yoseph Imry
    • 2
    • 4
  • David J. Bergman
    • 2
    • 4
  1. 1.Faculty of PhysicsThe TechnionHaifaIsrael
  2. 2.Department of PhysicsTel-Aviv UniversityTel-AvivIsrael
  3. 3.Department of PhysicsTufts UniversityMedford
  4. 4.Soreq Nuclear Research CentreYavneIsrael

Personalised recommendations