Skip to main content
Log in

On the use of variational methods for solving Boltzmann equations involving non-Hermitian operators

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Variational principles yielding upper and lower bounds on transport coefficients can readily be applied to the Boltzmann equation, provided it has the form of a linear, inhomogeneous integrodifferential equation with a Hermitian operator acting on the deviation from equilibrium of the distribution function. In transport problems involving a magnetic field or an alternating electric field, this operator is non-Hermitian. By suitably transforming the transport equation, we show how Variational principles may still give upper and lower bounds. The bounds are used for considering the frequency-dependent conductivity associated with a general scattering operator, and the longitudinal magnetoresistivity in the relaxation time approximation for the scattering operator. Explicit results are presented for (1) the frequency-dependent conductivity of a charged Fermi liquid and (2) the longitudinal magnetoresistivity for a weakly anisotropic Fermi surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Ziman,Electrons and Phonons, Oxford University Press, London (1960).

    Google Scholar 

  2. H. HØjgaard Jensen, H. Smith, and J. W. Wilkins,Phys. Rev. 185:323 (1969).

    Google Scholar 

  3. F. Garcia-Moliner and S. Simons,Proc. Cambridge Phil. Soc. 53:848 (1957).

    Google Scholar 

  4. N. K. Hindley and F. Garcia-Moliner,Phys. Rev. A140:343 (1965).

    Google Scholar 

  5. E. I. Blount,Phys. Rev. 131:2354 (1963).

    Google Scholar 

  6. M. Bailyn,Phys. Rev. 126:2040 (1962).

    Google Scholar 

  7. R. Gurzhi,Soviet Phys.-JETP 8:673 (1959).

    Google Scholar 

  8. D. Pines and P. Nozières,Quantum Liquids, Vol. I, W. A. Benjamin, New York (1966).

    Google Scholar 

  9. A. A. Abrikosov and I. M. Khalatnikov,Rept. Progr. Phys. 22:329 (1959).

    Google Scholar 

  10. H. HØjgaard Jensen, H. Smith, and J. W. Wilkins,Phys. Letters 27B:532 (1968).

    Google Scholar 

  11. G. Brooker and J. Sykes,Phys. Rev. Letters 21:279 (1968).

    Google Scholar 

  12. L. Davis, Jr.,Phys. Rev. 56:93 (1939).

    Google Scholar 

  13. F. Garcia-Moliner,Proc. Roy. Soc. A249:73 (1958).

    Google Scholar 

  14. M. J. G. Lee and L. M. Falicov,Proc. Roy. Soc. A304:319 (1968).

    Google Scholar 

  15. P. A. Penz and R. Bowers,Phys. Rev. 172:991 (1968).

    Google Scholar 

  16. H. Smith and J. W. Wilkins,Phys. Rev. 183:624 (1969).

    Google Scholar 

  17. W. E. Lawrence, Thesis, Cornell University, Ithaca, New York (1970).

    Google Scholar 

  18. A. J. Bennett and M. J. Rice,Phys. Rev. 185:968 (1969).

    Google Scholar 

  19. J. A. Gaunt,Trans. Roy. Soc. 228:151 (1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ah-Sam, L.E.G., Jensen, H.H. & Smith, H. On the use of variational methods for solving Boltzmann equations involving non-Hermitian operators. J Stat Phys 3, 17–34 (1971). https://doi.org/10.1007/BF01012184

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012184

Key words

Navigation