The Histochemical Journal

, Volume 5, Issue 1, pp 87–104 | Cite as

The effect of fixative tonicity on the myosin filament lattice volume of frog muscle fixed following exposure to normal or hypertonic Ringer

  • D. F. Davey
Papers

Synopsis

Frog sartorius muscles have been fixed sequentially with acrolein and osmium tetroxide dissolved in vehicles of various tonicities, and the myosin filament spacings and sarcomere lengths measured with the electron microscope. From these dimensions the myosin unit-cell volume has been calculated and compared with X-ray diffraction data to determine the effect of fixation. In muscles soaked in normal Ringer and afterwards fixed using normal Ringer as a vehicle for the fixation agents, the unitcell volume undergoes a 10.4% reduction during the preparative procedure. Muscles soaked in hypertonic Ringer undergo a similar reduction in volume during fixation, provided hypertonic Ringer is used as the vehicle; if they are fixed in normal Ringer, the lattice swells during fixation, even if the change to the normal tonicity vehicle occurs after acrolein fixation. If blocks suitable for embedding are cut from the muscles before, rather than after, osmium fixation, more complex changes in intracellular dimensions may occur, including artefactual swelling of the T-system. It is concluded that fixation of tissues exposed to modifications of normal physiological solutions should be performed using the same modified solutions as fixative vehicles.

Keywords

Acrolein Osmium Tetroxide Ringer Solution Sarcomere Length Lattice Volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. April, E. W., Brandt, P. W. &Elliot, G. F. (1971). The myofilament lattice: studies on isolated fibers. I. The constancy of the unit-cell volume with variation in sarcomere length in a lattice in which the thick-to-thin myofilament ratio is 6: 1.J. Cell. Biol. 51, 72–82.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Birks R. I. (1971). Effects of stimulation on synaptic vesicles in sympathetic ganglia, as shown by fixation in the presence of Mg2+.J. Physiol., Lond. 216, 26–28P.Google Scholar
  3. Birks, R. I. &Davey, D. F. (1969). Osmotic responses demonstrating the extracellular character of the sarcoplasmic reticulum.J. Physiol., Lond. 202, 171–88.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Birks, R. I. &Davey, D. F. (1972). An analysis of volume changes in the T-tubes of frog skeletal muscle exposed to sucrose.J. Physiol., Lond. 222, 95–111.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bone, Q. &Denton, E. J. (1971). The osmotic effects of electron microscope fixatives.J. Cell Biol. 49, 571–81.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bone, Q. &Ryan, K. P. (1972). Osmolarity of osmium tetroxide and glutaraldehyde fixatives.Histochem. J. 4, 331–47.CrossRefPubMedGoogle Scholar
  7. Brandt, P. W., Lopez, E., Rueben, J. P. &Grundfest, H. (1967). The relationship between myofilament packing density and sarcomere length in frog striated muscle.J. Cell Biol. 33, 255–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brandt, P. W., Reuben, J. P. &Grundfest, H. (1968). Correlated morphological and physiological studies on isolated single muscle fibers. II. The properties of the crayfish transverse tubular system: localization of the sites of reversible swelling.J. Cell Biol. 38, 115–29.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carslen, F., Knappeis, G. G. &Buchtal, F. (1961). Ultrastructure of the resting and contracted striated muscle fibers at different degrees of stretch.J. biophys. Cytol.,11, 95–117.CrossRefGoogle Scholar
  10. Carstensen, E. L., Aldridge, W. G., Child, S. Z., Sullivan, P. &Brown, H. H. (1971). Stability of cells fixed with glutaraldehyde and acrolein.J. Cell Biol. 50, 529–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Elbers, P. F. (1966). Ion permeability of the egg ofLimnaea stagnalis L., on fixation for electron microscopy.Biochim. biophys. Acta 112, 318–29.CrossRefPubMedGoogle Scholar
  12. Foulks, J. G., Pacey, J. A. &Perry, Florence A. (1965). Contractures and swelling of the transverse tubules during chloride withdrawal in frog skeletal muscle.J. Physiol., Lond. 180 96–115.PubMedPubMedCentralGoogle Scholar
  13. Freygang, W. H., Goldstein, D. A., Hellam, D. C. &Peachey, L. D. (1964). The relation between the late after-potential and the size of the transverse tubular system of frog muscle.J. gen. Physiol. 48, 235–63.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Freygang, W. H., Rapoport, S. I. &Peachey, L. D. (1967). Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure.J. gen. Physiol. 50, 2437–58.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Good, N. E., Winget, G. D., Winter, Wilhelmina, Connolly, T. N., Izawa, S. &Singh, R. M. M. (1966). Hydrogen ion buffers for biological research.Biochemistry, N.Y. 5, 467–77.CrossRefGoogle Scholar
  16. Griffin, J. L. (1963). Motion picture analysis of fixation for electron microscopy:Amoeba proteus.J. Cell Biol. 19, 77A.Google Scholar
  17. Hayat, M. A. (1970).Principles and Techniques of Electron Microscopy. Volume I, Biological applications. New York: Van Nostrand Reinhold.Google Scholar
  18. Huxley, H. E. (1957). The double array of filaments in cross-striated muscle.J. biophys. biochem. Cytol. 3, 631–48.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huxley, H. E. (1968). Structural difference between resting and rigor muscle: evidence from intensity changes in the low-angle equatorial X-ray diagram.J. molec. Biol. 37, 507–20.CrossRefPubMedGoogle Scholar
  20. Huxley, H. E., Page, Sally &Wilkie, D. R. (1963). An electron microscopic study of muscle in hypertonic solutions. Appendix to Dydyńska, Maria & Wilkie, D.R.J. Physiol., Lond. 169, 312–29.CrossRefPubMedCentralGoogle Scholar
  21. Karnovsky, M. J. (1967). The ultrastructural basis of capillary permeability studied with peroxidase as a tracer.J. Cell Biol. 35, 213–36.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kellenberger, E., Ryter, Antoinette &Séchaud, Janine (1958). Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states.J. biophys. biochem. Cytol. 4, 671–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Luft, J. H. (1959). The use of acrolein as a fixative for light and electron microscopy.Anat. Rec. 133, 305.Google Scholar
  24. Millonig, G. (1968). Experimental approach to problems of fixation and dehydration.Advances in Optical and Electron Microscopy,2, 287–317.Google Scholar
  25. Page, Sally G. &Huxley, H. E. (1963). Filament lengths in striated muscle.J. Cell Biol. 19, 369–90.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Palade, G. E. (1952). A study of fixation for electron microscopy.J. exp. Med. 95, 285–98.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Peachey, L. D. (1958). Thin sections. I. A study of section thickness and physical distortion produced during microtomy.J. biophys. biochem. Cytol. 4, 233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rapoport, S. I., Peachey, L. D. &Goldstein, D. A. (1969). Swelling of the transverse tubular system in frog sartorius.J. gen. Physiol. 54, 166–77.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.J. Cell Biol. 17, 208–12.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rome, Elizabeth (1968). X-ray diffraction studies of the filament lattice of striated muscle in various bathing media.J. molec. Biol. 37, 331–44.CrossRefPubMedGoogle Scholar
  31. Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26, 31–43.CrossRefPubMedGoogle Scholar
  32. Wood, R. L. &Luft, J. H. (1965). The influence of buffer systems on fixation with osmium tetroxide.J. Ulstrastruct. Res. 12, 22–45.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1973

Authors and Affiliations

  • D. F. Davey
    • 1
  1. 1.Department of ZoologyUniversity of BristolUK

Personalised recommendations