The Histochemical Journal

, Volume 14, Issue 4, pp 573–584 | Cite as

A quantitative histochemical study of sulphydryl and disulphide content during normal epidermal keratinization

  • D. Broekaert
  • K. Cooreman
  • P. Coucke
  • S. Nsabumukunzi
  • P. Reyniers
  • P. Kluyskens
  • E. Gillis


A quantitative histochemical study was carried out on the distribution of protein thiol and disulphide groups in normal human plantar epidermal tissue. Histochemical demonstration of reactive groups was achieved by addition ofN-(4-aminophenyl) maleimide, subsequent diazotization and final coupling with a Nitro Red or chromotropic acid label as first described by Sippel. The quantitative reliability of the method was tested by absorption cytophotometry, and evaluated on the basis of the internal consistency of the results reported.

Our histological observations and histophotometric data support accepted views on epidermal keratinization. A limited, though reproducible, amount of disulphide bonds was observed near the basement membrane. The free thiol concentration in basal and prickle cells was low and almost constant, but was higher in the granular cells, where deposition of sulphur-containing proteins on cell membranes is initiated. In Malpighian layers, disulphide cross-links only occurred just beneath the transition zone in thickened cell membranes. The staining pattern of the inner stratum corneum resembled a mosaic and was characterized by a sharp rise of the disulphide content, which exceeded the decrease in free thiol groups. The free thiol concentration decreased further throughout the cornified layers whilst the disulphide content remained fairly constant. Staining of thiol and disulphide groups together corresponded, within the limits of the standard error, to the sum of the thiol and disulphide concentrations when they were assayed separately in living and horny cells. These results confirm that living cells are the main site of free thiol groups, while horny cells are the most prominent site of disulphide cross-links.


Disulphide Maleimide Free Thiol Cornified Layer Free Thiol Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achten, G. (1959) Recherches sur la kératinisation de la cellule épidermique chez l'homme et le rat.Archs. Biol., Liège 70, 1–119.Google Scholar
  2. Baden, H. P. (1979) Keratinization in the epidermis.Pharmac. Ther. 7, 393–411.Google Scholar
  3. Barrnett, R. J. &Seligman, A. M. (1952) Histochemical demonstration of protein-bound sulfhydryl groups.Science 116, 323–7.Google Scholar
  4. Bennett, H. S. &Yphantis, D. A. (1948) 1-(4-chloromercuriphenyl-azo)-naphthol-2.J. Am. Chem. Soc. 70, 3522.Google Scholar
  5. Bergstresser, P. R., Pariser, R. J. &Taylor, J. R. (1978) Counting and sizing of epidermal cells in normal human skin.J. Invest. Derm. 70, 280–4.Google Scholar
  6. Bhatnager, G. M. &Freedberg, I. M. (1975) Soluble proteins of newborn rat epidermis.J. invest. Derm. 64, 285.Google Scholar
  7. Brody, I. (1979) Ultrastructure of the fibrous substance in the keratinocytes of the epidermis in healthy individuals.J. Cutan. Path. 6, 333–46.Google Scholar
  8. Broekaert, D., Coucke, P., Nsabumukunzi, S., Reyniers, P., Kluyskens, P. &Gillis, E. (1982) Quantitative determination of free thiol and disulphide groups by a fluorescent maleimide procedure.Acta histochem. 70, 62–8.Google Scholar
  9. Chakrabarti, S. G., Tillman, R. L. &Kenney, J. A. (1975) Keratohyalin granules and histidine-rich protein of adult rat epidermis.J. invest. Derm. 64, 289.Google Scholar
  10. Chevremont, M. &Frederic, J. (1943) Une nouvelle méthode histochimique de mise en évidence des substances à fonction sulphydrile. Application à l'épiderme, au poel et à la levure.Archs Biol., Liège 54, 589–605.Google Scholar
  11. Culling, C. F. A. (1974)Handbook of Histopathological and Histochemical Techniques. 3rd edn. pp. 131–132. London: Butterworths.Google Scholar
  12. Curtis, S. K. &Cowden, R. R. (1980) Effects of preparation and fixation on three quantitative fluorescent cytochemical procedures.Histochemistry 68, 29–38.Google Scholar
  13. Esterbauer, H. (1976) Absolutbestimmung von Protein-SH-gruppen mit dem DDD-Reagens.Acta histochem. Suppl.16, 183–8.Google Scholar
  14. Fessler, J. H. &Fessler, L. I. (1978) Biosynthesis of procollagen.Ann. Rev. Biochem. 47, 129–62.Google Scholar
  15. Fuchs, E. &Green, H. (1980) Changes in keratin gene experssion during terminal differentiation of the keratinocyte.Cell 29, 1033–42.Google Scholar
  16. Fukuyama, K. &Epstein, W. L. (1969) Sulfur-containing proteins and epidermal keratinization.J. Cell Biol. 40, 830–8.Google Scholar
  17. Fukuyama, K. &Epstein, W. L. (1975a) A comparative autoradiographic study of keratohyalin granules containing cysteine and histidine.J. Ultrastruct. Res. 51, 314–25.Google Scholar
  18. Fukuyama, K. &Epstein, W. L. (1975b) Heterogenous proteins in keratohyalin granules studied by quantitative autoradiography.J. invest. Derm. 65, 113–7.Google Scholar
  19. Gillis, E., Kluyskens, P., Broekaert, D., Coucke, P., Nsabumukunzi, S. &Reyniers, P. (1980) Structural and topological studies of cholesteatoma proteins in relation to the keratinization process.Acta oto-rhino-laryng. belg. 34, 23–33.Google Scholar
  20. Hayward, A. F. (1979) Membrane-coating granules.Int. Rev. Cytol. 59, 97–127.Google Scholar
  21. Matoltsy, A. G. (1976) Keratinization.J. invest. Derm. 67, 20–5.Google Scholar
  22. Matoltsy, A. G. &Matoltsy, M. N. (1970) The chemical nature of keratohyalin granule of the epidermis.J. Cell Biol. 47, 593–603.Google Scholar
  23. Minor, R. R., Clark, C. C., Strause, E. L., Koszalka, T. R., Brent, R. L. &Kefalides, N. A. (1976) Basement membrane procollagen is not converted to collagen in organ cultures of parietal yolk sac endoderm.J. biol. Chem. 251, 1789–94.Google Scholar
  24. Montagna, W. E., Eisen, A. Z., Rademacher, A. H. &Chase, H. B. (1954) Histology and Cytochemistry. IV. The distribution of sulphydryl and disulphide groups.J. invest. Derm. 23, 23–32.Google Scholar
  25. Ogawa, H., Taneda, A., Kanaoka, Y. &Sekine, T. (1979) The histochemical distribution of protein bound sulfhydryl groups in human epidermis by the new staining method.J. Histochem. Cytochem. 27, 942–6.Google Scholar
  26. Pearse, A. G. E. (1968)Histochemistry, Theoretical and Applied. 3rd edn. Vol. 1, pp. 143–146. London. Churchill-Livingstone.Google Scholar
  27. Rice, R. H. &Green, H. (1979) Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions.Cell,18, 681–94.Google Scholar
  28. Sippel, T. O. (1973) The histochemistry of thiols and disulphides. I. The use ofN-(4-aminophenyl) maleimide for demonstrating thiol groups.Histochem. J. 5, 413–23.Google Scholar
  29. Sippel, T. O. (1978a) The histochemistry of thiols and disulphides. II. Methodology of differential staining.Histochem. J. 10, 585–95.Google Scholar
  30. Sippel, T. O. (1978b) The histochemistry of thiols and disulphides. III. Staining patterns in rat tissues.Histochem. J. 10, 597–609.Google Scholar
  31. Sippel, T. O. (1980) The histochemistry of thiols and disulphides. IV. Protective fixation by organomercurial-formalin mixtures.Histochem. J. 12, 107–17.Google Scholar
  32. Steigleder, G. K. (1956) Zum Histochemischen Nachweis SH- und SS gruppenhaltiger Substanzen in der normalen und pathologisch veranderten Haut der Menschen.Klin. Wschr. 34, 495.Google Scholar
  33. Steigleder, G. K. (1957) Die Histochemie der Epidermis und ihrer Anhangsgebilde.Arch. klin. exp. Derm. 206, 276–319.Google Scholar
  34. Steiner, K. (1960) Sulfur levels in normal and pathologic epidermis.J. invest. Derm. 34, 189–96.Google Scholar
  35. Steinert, P. M. &Idler, W. W. (1979) Postsynthetic modifications of mammalian epidermal α-keratin.Biochemistry 18, 5664–9.Google Scholar
  36. Sun, T.-T. &Green, H. (1978) Immunofluorescent staining of keratin fibers in cultured cells.Cell 14, 469–76.Google Scholar
  37. Tezuka, T., Hirai, R. &Ogawa, H. (1978) The fluorescent profiles of keratohyalin granules of newborn rat epidermis with a new fluorescent thiol reagent (DACM).Acta dermatovener, Stockholm 58, 391–4.Google Scholar
  38. Williams, I. F., Harwood, R. &Grant, M. E. (1976) Triple helix formation and disulphide bonding during the biosynthesis of glomerular basement membrane collagen.Biochem. biophys. Res. Commun. 70, 200–6.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • D. Broekaert
    • 1
  • K. Cooreman
    • 1
  • P. Coucke
    • 1
  • S. Nsabumukunzi
    • 1
  • P. Reyniers
    • 1
  • P. Kluyskens
    • 2
  • E. Gillis
    • 1
  1. 1.Laboratory of Physiological Chemistry, Faculty of MedicineState University of GhentBelgium
  2. 2.Oto-Rhino-Laryngological Clinic, Faculty of MedicineState University of GhentBelgium

Personalised recommendations