Skip to main content
Log in

Early and late changes in the metabolic pattern of the working myocardial fibres and Purkinje fibres of the human heart under ischaemic and inflammatory conditions: An enzyme histochemical study

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

In this communication, the results of an enzyme histochemical study on the working myocardial fibres and Purkinje fibres of the atrioventricular conducting system of the human heart under ischaemic and inflammatory conditions are presented. The material was selected from patients showing changes which could be classified in three major groups: (1) early changes due to acute ischaemia either in the myocardial fibres or in the conducting system or in both; (2) chronic ischaemic changes due to cardiovascular insufficiency, such as old infarction, or coronary arteriosclerosis or both; and (3) inflammatory conditions such as myocarditis.

The activity and location of about 20 enzymes that play a role in the aerobic and anaerobic pathways of energy metabolism were examined. The activity and location of some hydrolytic enzymes and the glycogen and lipid content were also studied.

The most important findings were an obvious depletion of the glycogen reserves under acute ischaemic changes in both types of fibre. This was associated with a transient or permanent reduction in activity of many enzymes that play a role in aerobic and anaerobic metabolism. Further, there was an instantaneous and persistent increase in the activity of the NADPH-regenerating enzymes of the pentose phosphate pathway and of glyceraldehyde-3-phosphate dehydrogenase, the rate-limiting enzyme of glycolysis under ischaemic conditions. Chronic ischaemic changes were characterized by a gradual long-term increase in the activity of many anaerobic glycolytic enzymes. Moreover, there was an absence of activity of acetylcholine esterase immediately after the onset of infarction in the fibres of the conducting system. Lastly, a slight increase in lipid content was found in the hypertrophic chronic ischaemic fibres and in old infarcted areas. Cardiac fibres in inflamed areas showed a marked increased activity of the pentose phosphate shunt enzymes and a less pronounced increased activity of most anaerobic and hydrolytic enzymes. In contrast to the cardiac fibres in infarcted areas, the fibres in inflamed areas did not reveal a decrease or absence of activity of aerobic enzymes such as succinate dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcine, E., Lageron, A. &Wegmann, R. (1965) Étude histoenzymologique du métabolism glucidique du faisceau de His à différent niveaux et du myocarde ventriculaire, chez le rat.Ann. Histochim. 10, 127–44.

    Google Scholar 

  • Anderson, K. R., Popple, A., Parker, D. J., Sayer, R., Trickey, R. J. &Davies, M. J. (1979) An experimental assessment of macroscopic enzyme techniques for the autopsy demonstration of myocardial infarction.J. Path. 217, 93–110.

    Google Scholar 

  • Bajusz, E. &Jasmin, G. (1964a) Histochemical studies on the myocardium following experimental interference with coronary circulation in the rat. I. Occlusion of coronary artery.Acta histochem. 18, 222–37.

    Google Scholar 

  • Bajusz, E. &Jasmin, G. (1964b) Histochemical studies on the myocardium following experimental interference with coronary circulation in the rat. II. Occlusion of coronary veins.Acta histochem. 18, 238–50.

    Google Scholar 

  • Barka, M. D. &Anderson, P. J. (1963)Histochemistry, Theory, Practice and Bibliography. New York: Harper and Row.

    Google Scholar 

  • Burstone, M. S. (1962)Enzyme Histochemistry. New York: Academic Press.

    Google Scholar 

  • Christie, K. N. &Stoward, P. J. (1978) Endogenous peroxidase in mast cells localized with a semi-permeable membrane technique.Histochem. J. 10, 425–33.

    Google Scholar 

  • Cornblatt, M., Randle, P. J., Parmeggiani, A. &Morgan, H. E. (1963) Regulation of glycogenolysis in muscle: Effects of glucagon and anoxia on lactate production, glycogen content and phosphorylase activity in the perfused isolated rat heart.J. biol. Chem. 238, 1592–7.

    Google Scholar 

  • Dreyfus, J. C., Schapira, G., Resnais, J. &Scebat, L. (1960) La créatinkinase sérique dans le diagnostic de l'infarctes myocardique.Rev. franç. Etud. clin. Biol. 5, 386–7.

    Google Scholar 

  • Elias, E. A., Elias, R. A. &Van Der Baan, R. (1981) Metastasizing carcinoma of Bartholin's gland. An enzyme histochemical and cytological study.Acta histochem. 69, 31–9.

    Google Scholar 

  • Elias, E. A., Elias, R. A., Bijlsma, P. J. &Tazelaar, D. J. (1980b) The enzyme histochemistry of metastasizing basal cell carcinomaJ. Path. 131, 235–42.

    Google Scholar 

  • Elias, E. A. &Meijer, A. E. F. H. (1981) The increase in activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in skeletal muscles of rats after subcutaneous administration ofN,N′-dimethyl-para-phenylene-diamine.Histochemistry 71, 543–58.

    Google Scholar 

  • Elias, E. A., De Vries, G. P., Elias, R. A., Tigges, A. J., &Meijer, A. E. F. H. (1980a) Enzyme histochemical studies on the conducting system of the human heart.Histochem. J. 12, 577–89.

    Google Scholar 

  • Evans, J. R. (1964) Cellular transport of long chain fatty acids.Can. J. Biochem. 42, 955–68.

    Google Scholar 

  • Fine, G., Morales, A. &Scerpella, J. R. (1966) Experimental myocardial infarction. A. histochemical study.Archs Path. 82, 4–8.

    Google Scholar 

  • Freedland, R. A. (1968) Considerations in the estimation of enzyme half-lives in higher animals by rates of changes in activities.Life Sci. 7, 499–503.

    Google Scholar 

  • Glenner, G. G., Burtner, H. J. &Brown, G. W. (1957) The histochemical demonstration of monoamine oxidase activity by tetrazolium salts.J. Histochem. Cytochem. 5, 591–600.

    Google Scholar 

  • Goldberg, A. &St John, A. C. (1976) Intracellular protein degradation in mammalian and bacterial cells. Part. 2.Ann. Rev. Biochem. 45, 747–803.

    Google Scholar 

  • Gould, S. E. (1960)Pathology of the Heart. 2nd edn., pp. 599–606. Springfield, Illinois: Thomas.

    Google Scholar 

  • Jestädt, R. &Sandritter, W. (1959) Erfahrungen mit der TTC-(Triphenyl-tetrazoliumchlorid) Reaktion bei der pathologisch-anatomischen Diagnose des frischen Herzinfarktes.Z. Kreisl. Forsch. 48, 802–9.

    Google Scholar 

  • Karnovsky, M. J. &Roots, L. (1964) A ‘direct-coloring’ thiocholine method for choline esterase.J. Histochem. Cytochem. 12, 219–21.

    Google Scholar 

  • Krebs, H. A. (1972) Some aspects of the regulation of fuel supply in omnivorous animals. InEnzyme Regulation, Vol. 10 (edited byWeber, G.), pp. 397–420. Oxford: Pergamon Press.

    Google Scholar 

  • Kubler, W. &Spieckermann, P. G. (1970) Regulation of glycolysis in the ischaemic and anoxic myocardium.J. molec. cell. Cardiol. 1, 351–77.

    Google Scholar 

  • Lodja, Z., Gossrau, R. &Schiebler, T. H. (1979)Enzyme Histochemistry. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Mallory, G. K., White, P. D. &Salcedo-Salgar, J. (1939) The speed of healing of myocardial infarcation.Am. Heart. J. 18, 647–71.

    Google Scholar 

  • Meijer, A. E. F. H. (1968) Improved histochemical method for the demonstration of the activity of α-glucan phosphorylase 1. The use of glucosyl acceptor dextran.Histochemie 12, 244–52.

    Google Scholar 

  • Meijer, A. E. F. H. (1970) Histochemical method for the demonstration of myosin adenosine triphosphatase in muscle tissue.Histochemie 22, 51–8.

    Google Scholar 

  • Meijer, A. E. F. H. (1972) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. I. Acid phosphatase.Histochemie 30, 31–9.

    Google Scholar 

  • Meijer, A. E. F. H. (1973) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. III. Lactate dehydrogenase.Histochemie 35, 165–72.

    Google Scholar 

  • Meijer, A. E. F. H., Benson, D. &Scholte, H. R. (1977a) The influence of freezing and freeze-drying of tissue specimens on enzyme activity.Histochemistry 51, 297–303.

    Google Scholar 

  • Meijer, A. E. F. H. &Elias, E. A. (1977) Die Aktivität der Glucose-6-Phosphat-Dehydrogenase and 6-Phosphogluconat-Dehydrogenase in Skelettmuskelgewebe von Patienten mit Muskelkrankheiten.Acta histochemica. Suppl.18, 169–75.

    Google Scholar 

  • Meijer, A. E. F. H., Elias, E. A. &Vloedman, A. H. T. (1977b) The value of enzyme histochemical techniques in classifying fibre types of human skeletal muscle. III. Human skeletal muscles with inherited or acquired disease of the neuromuscular system.Histochemie 53, 97–105.

    Google Scholar 

  • Meijer, A. E. F. H. &Stegehuis, F. (1980) Histochemical technique for the demonstration of phosphofructokinase activity in heart and skeletal muscles.Histochemistry 66, 75–81.

    Google Scholar 

  • Meijer, A. E. F. H. &Vloedman, A. H. T. (1973) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. II. Non specific esterase and β-glucuronidase.Histochemie 34, 127–34.

    Google Scholar 

  • Meijer, A. E. F. H. &Vloedman, A. H. T. (1980) The histochemical characterization of the coupling state of skeletal muscle mitochondria.Histochemistry 69, 217–32.

    Google Scholar 

  • Meijer, A. E. F. H. &De Vries, G. P. (1974) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. IV. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (decarboxylating).Histochemistry 40, 349–59.

    Google Scholar 

  • Meijer, A. E. F. H. &De Vries, G. P. (1975) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. V. Isocitrate: NADP+ oxidoreductase (decarboxylating).Histochemistry 43, 225–36.

    Google Scholar 

  • Meijer, A. E. F. H. &De Vries, G. P. (1978) Enzyme histochemical studies on the Purkinje fibres of the atrioventricular system of the bovine and porcine hearts.Histochem. J. 10, 399–408.

    Google Scholar 

  • Morales, A. R. &Fine, G. (1966) Early human myocardial infarction. A histochemical study.Archs Path. 82, 9–14.

    Google Scholar 

  • Morgan, H. E., Henderson, M. J., Regen, D. M. &Park, C. R. (1959) Regulation of glucose uptake in heart muscle from normal and alloxan-diabetic rats. Effects of insulin, growth hormone, cortisone and anoxia.Ann. N.Y. Acad. Sci. 82, 387–402.

    Google Scholar 

  • Nachlas, M., Tsou, K. C., De Souza, E., Cheng, C-S. &Seligman, A. M. (1957) The cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole.J. Histochem. Cytochem. 5, 420–36.

    Google Scholar 

  • Nachlas, M. M. &Shnitka, T. K. (1963) Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity.Am. J. Path. 42, 379–405.

    Google Scholar 

  • Opie, L. H. (1976) II. Metabolic regulation in ischemia and hypoxia. Effects of regional ischemia on metabolism of glucose and fatty acids. Suppl. 1,Circ. Res. 38, 53–67.

    Google Scholar 

  • Otsuka, N., Hara, T. &Okamoto, H. (1967) Histotopochemische Untersuchungen am Reizleitungssystem des Hundeherzens.Histochemie 10, 66–73.

    Google Scholar 

  • Rovetto, M. J., Lamberton, W. F. &Neely, J. R. (1975) Mechanisms of glycolytic inhibition in ischemic rat hearts.Circ. Res. 37, 742–51.

    Google Scholar 

  • Schiebler, T. H. (1961) Histochemische Untersuchungen am Reizleitungssystem tierischer Herzen.Naturwissenschaften 14, 502–3.

    Google Scholar 

  • Schiebler, T. H. (1963) Über den histochemischen Nachweis von Atmungsfermenten im Reizleitungssystem.Anat. Anz. 111, 103–12.

    Google Scholar 

  • Schiebler, T. H., Stark, M. &Caesar, R. (1956) Die Stoffwechselsituation des Reizleitungssystems.Klin. Wschr. 34, 181–3.

    Google Scholar 

  • Shnitka, T. K. &Nachlas, M. M. (1963) Histochemical alterations in ischaemic heart muscle and early myocardial infarction.Am. J. Path. 42, 507–27.

    Google Scholar 

  • Snijder, J. &Meijer, A. E. F. H. (1970) Enzyme histochemical studies on the Purkinje fibres of canine, bovine and porcine hearts.Histochem. J. 2, 395–409.

    Google Scholar 

  • Vries, G. P. De &Meijer, A. E. F. H. (1976) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. VI.d-glucose-6-phosphate isomerase and phosphoglucomutase.Histochemistry 50, 1–8.

    Google Scholar 

  • Vries, G. P. De, Tigges, A. J. &Meijer, A. E. F. H. (1980) The histochemical demonstration of glyceraldehyde phosphate dehydrogenase activity with a semipermeable membrane technique.Histochem. J. 12, 119–22.

    Google Scholar 

  • Wachstein, M. &Meisel, E. (1955) Succinic dehydrogenase activity in myocardial infarction and in induced myocardial necrosis.Am. J. Path. 31, 353–65.

    Google Scholar 

  • Wildenthal, K. (1975) Lysosomal and lyosomal enzymes in the heart. InLysosomes in Biology and Pathology, Vol. 4 pp. 167–190. (edited byDingle, J. T. andDean, R. T.), Amsterdam, Oxford: North Holland.

    Google Scholar 

  • Williamson, J. R. (1966) Glycolytic control mechanisms II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat hearts.J. biol. Chem. 241, 5026–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elias, E.A., Elias, R.A., De Vries, G.P. et al. Early and late changes in the metabolic pattern of the working myocardial fibres and Purkinje fibres of the human heart under ischaemic and inflammatory conditions: An enzyme histochemical study. Histochem J 14, 445–459 (1982). https://doi.org/10.1007/BF01011856

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011856

Keywords

Navigation