Synopsis
Alcian Blue stains much more slowly than other basic dyes, and differential staining by the dye is greatly influenced by differences in the rate of staining of various basophilic components. Epithelial mucin stains most rapidly, followed by mast cell granules, pericapsular cartilage matrix, interstitial cartilage matrix, nuclei and cytoplasmic chromidial substance (presumably RNA), in that order. Sites containing nucleic acid stain intensely under some conditions, e.g. after some days in Alcian Blue at pH 4 and room temperature and, therefore do not lack affinity for the dye. Nucleic acids are not, however, in general easily stained with Alcian Blue, being extremely slow-staining and also being easily leached from the section by hot or acidic solutions.
Not only do most substrates fail to reach a plateau value of dye uptake after ‘normal’, relatively short, staining times (e.g. some hour), but the reversibility of staining by Alcian Blue is markedly affected by the duration of staining. The dye is largely or completely irremovable from most substrates after any except the shortest staining times, but cartilage matrix and mast cell granules are exceptional in that a good deal of dye is removable from these substrates by 1.0m MgCl2, even after prolonged staining.
Raising the temperature of, or adding urea to, the dyebath decreases dye aggregation and increases the uptake of Alcian Blue, particularly by relatively slow-staining substrates. Mast cell granules stained with hot dye under some conditions (e.g. 0.05% dye, pH 4, 56°C, 18 hr), but not with cold dye (e.g. 7 days at 4°C) unless pre-treated with hot buffer.
The aggregation of Alcian Blue in solution, as assessed by changes in the absorption spectrum, is markedly affected by dye concentration, dyebath temperature, additives such as salt or urea, and also by the age of the solution, the dye being notably unstable under some conditions.
The ‘critical electrolyte concentration’ method of Alcian Blue staining, for the characterization of tissue polyanions, theoretically requires staining to be carried to a true (reversible) equilibrium. The present findings throw doubt on the validity of the method.
This is a preview of subscription content, access via your institution.
References
Asquith, R. S. &Booth, A. K. (1971). Kaltfärbemethoden für Wolle und ihr Mechanismus.Deut. Textiltechnik 21, 450–55.
Baker, J. R. (1958).Principles of biological microtechnique. London: Methuen.
Ehrlich, P. (1879). Über die specifischen Granulationen des Blutes.Arch. Anat. Phys. (Physiol. Abt). Reprinted inCollected Papers 1, 117–23.
El-Mariah, A. A. R. &Nursten, H. E. (1966). Thermodynamics of leather dyeing. II. Dyeing of hide powder with simple acid dyes at various temperatures.J. Soc. Dyers Colour 82, 132–9.
Friedberg, S. H. &Goldstein, D. J. (1969). Thermodynamics of orcein staining of elastic fibres.Histochem. J. 1, 361–76.
Gierke, H. (1884). Färberei zu mikroskopischen Zwecken.Z. wiss. Mikrosk. 1, 62–100, 372–408–497–557 and2, 164–221.
Goldstein, D. J. (1962). Correlation of size of dye particle and density of substrate, with special reference to mucin staining.Stain Technol. 37, 79–93.
Goldstein, D. J. (1963). An approach to the thermodynamics of histological dyeing, illustrated by experiments with azure A.Q. Jl microsc. Sci. 104, 413–39.
Goldstein, D. J. (1965). Relation of effective thickness and refractive index to permeability of tissue components in fixed sections.J. R. microsc. Soc. 84, 43–54.
Goldstein, D. J. (1968). On the affinity of dyes for histological substrates. In:Cell Structure and its interpretation (eds. S. M. McGee-Russell and K. F. A. Ross). London: Arnold.
Goldstein, D. J. (1970). Aspects of scanning microdensitometry. I. Stray light (glare).J. Microsc. 92, 1–16.
Goldstein, D. J. &Horobin, R. W. (1970). Rate and equilibrium factors in staining by Alcian Blue.Proc. R. microsc. Soc. 6, 24.
Goldstein, D. J. &Horobin, R. W. (1973). Further evidence of non-equilibrium factors in Alcian Blue staining.Proc. R. microsc. Soc. 8, 35.
Goldstein, D. J. &Horobin, R. W. (1974). Surface staining of cartilage by Alcian Blue, with reference to the role of microscopic dye aggregates in histological staining.Histochem. J. 6, 175–84.
Heidenhain M. (1903). Färbungen. In:Encykl. der mikr. Technik. (eds. Ehrlich, P., Krause, R., Masse, M. & Rosin, H.), pp. 327–60. Berlin: Urban & Schwarzenberg.
Gruen, L. C. (1972). Aggregation of copper phthalocyanine dyes.Austral. J. Chem. 25, 1661–7.
Hertwig, G. (1929). Die Theorie der Färbung fixierter Präparate.Handb. der mikr. Anat. des. Mensch. 1/1, 68–89.
Lenher, S. &Smith, J. E. (1935). The dyeing of cotton: particle size and substantivity.J. Am. Soc. 57, 497–503.
Leppi, T. J. &Spicer, S. S. (1966). The histochemistry of mucins in certain primate salivary glands.Am. J. Anat. 118, 833–59.
Lang, C. (1961).Biochemist's Handbook. London: E. & F. N. Spon.
Mann, G. (1902).Physiological Histology. Oxford: Clarendon Press.
McKinney, R. E. (1953). Staining bacterial polysaccharides.J. Bact. 66, 453–4.
Möllendorf, W. V. &Möllendorf, M. V. (1924). Untersuchungen zur Theorie der Färbung fixierter Präparate. III. Durchtränkungs-und Niederschlags-färbung als Haupterscheinungen bei der histologischen Färbung.Ergeb. der Anat. u. Entwcklngsgesch. 25, 1–66.
Monahan, A. R., Brado, J. A. &Deluca, A. F. (1972). The dimerization of a copper(II)-phthalocyanine dye in carbon tetrachloride and benzene.J. Phys. Chem. 76, 446–9.
Mukerjee, P. &Ghosh, A. K. (1963). The effect of urea on methylene blue, its self-association and interaction with polyelectrolytes in aqueous solution.J. Phys. Chem. 67, 193–7.
Pappenheim, A. (1918). Die morphologische Hämatologie.Folia Haematol. 22, 1–532.
Quintarelli, G. &Dellovo, M. C. (1963). Mucopolysaccharide histochemistry of rat tooth germs.Histochemie 3, 195–207.
Quintarelli, G., Scott, J. E. &Dellovo, M. C. (1964). The chemical and histochemical properties of Alcian Blue. III. Chemical blocking and unblocking.Histochemie 4, 99–112.
Schiebe, G. &Zanker, V. (1958). Physikochemische Grundlagen der Metachromasie.Acta histochem. Supp.I, 6–35.
Schnabel, E., Nothert, H. &Kuhn, H. (1962). Monomers, dimers and tetramers in solutions of phthalocyanine sulphonates. In:Recent progress in natural and synthetic colouring matters and related materials (ed. Gore, T. S.) pp. 561–72. New York: Academic Press.
Scott, J. E. (1967). On the mechanism of the methyl green-pyronin stain for nucleic acids.Histochemie,9, 30–47.
Scott, J. E. (1970). Histochemistry of Alcian Blue. I. Metachromasia of Alcian Blue, Astrablau and other cationic phthalocyanin dyes.Histochemie 21 277–85.
Scott, J. E. &Dorling, J. (1965). Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian Blue in salt solutions.Histochemie 5, 221–33.
Scott, J. E. &Willett, I. H. (1966). Binding of cationic dyes to nucleic acids and other biological polyanions.Nature (London) 209, 985–7.
Seki, M. (1932). Substantive (direkte) Färbung der histologischen fixierten Präparate.Folia anat. jap. 10, 635–54.
Seki, M. (1933). Anteilnahme der Dispersität der Farben und der Dichte der zu färbenden Strukturen an histologischen Färbungsvorgängen, besonders an der Elastikafärbung.Folia anat. jap. 11, 377–90.
Singer, M. (1952). Factors which control the staining of tissue sections with acid and basic dyes.Int. Rev. Cytol. 1, 211–55.
Spicer, S. S., Horn, R. G. &Leppi, T. J. (1967). Histochemistry of connective tissue mucopolysaccharides. In:The connective tissue (eds. Wagner, B. M. & Smith, D. E.) pp. 251–303. Baltimore: Williams & Wilkins.
Venkataraman, K. (1952).The chemistry of synthetic dyes. Vol. 2. New York: Academic Press.
Vickerstaff, T. (1954).The physical chemistry of dyeing. 2nd Edn., p. 514, London: Oliver & Boyd.
Zeiger, K. (1936). Kolloidhistologische Untersuchungen an Epithelien. Zellforsch.mikrosk. Anat. 24, 11–41.
Zeiger, K. (1938).Physikochemische Grundlagen der histologischen Methodik. Dresden: Steinkopff.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Goldstein, D.J., Horobin, R.W. Rate factors in staining by Alcian Blue. Histochem J 6, 157–174 (1974). https://doi.org/10.1007/BF01011804
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01011804