Skip to main content
Log in

Rate factors in staining by Alcian Blue

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Synopsis

Alcian Blue stains much more slowly than other basic dyes, and differential staining by the dye is greatly influenced by differences in the rate of staining of various basophilic components. Epithelial mucin stains most rapidly, followed by mast cell granules, pericapsular cartilage matrix, interstitial cartilage matrix, nuclei and cytoplasmic chromidial substance (presumably RNA), in that order. Sites containing nucleic acid stain intensely under some conditions, e.g. after some days in Alcian Blue at pH 4 and room temperature and, therefore do not lack affinity for the dye. Nucleic acids are not, however, in general easily stained with Alcian Blue, being extremely slow-staining and also being easily leached from the section by hot or acidic solutions.

Not only do most substrates fail to reach a plateau value of dye uptake after ‘normal’, relatively short, staining times (e.g. some hour), but the reversibility of staining by Alcian Blue is markedly affected by the duration of staining. The dye is largely or completely irremovable from most substrates after any except the shortest staining times, but cartilage matrix and mast cell granules are exceptional in that a good deal of dye is removable from these substrates by 1.0m MgCl2, even after prolonged staining.

Raising the temperature of, or adding urea to, the dyebath decreases dye aggregation and increases the uptake of Alcian Blue, particularly by relatively slow-staining substrates. Mast cell granules stained with hot dye under some conditions (e.g. 0.05% dye, pH 4, 56°C, 18 hr), but not with cold dye (e.g. 7 days at 4°C) unless pre-treated with hot buffer.

The aggregation of Alcian Blue in solution, as assessed by changes in the absorption spectrum, is markedly affected by dye concentration, dyebath temperature, additives such as salt or urea, and also by the age of the solution, the dye being notably unstable under some conditions.

The ‘critical electrolyte concentration’ method of Alcian Blue staining, for the characterization of tissue polyanions, theoretically requires staining to be carried to a true (reversible) equilibrium. The present findings throw doubt on the validity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asquith, R. S. &Booth, A. K. (1971). Kaltfärbemethoden für Wolle und ihr Mechanismus.Deut. Textiltechnik 21, 450–55.

    Google Scholar 

  • Baker, J. R. (1958).Principles of biological microtechnique. London: Methuen.

    Google Scholar 

  • Ehrlich, P. (1879). Über die specifischen Granulationen des Blutes.Arch. Anat. Phys. (Physiol. Abt). Reprinted inCollected Papers 1, 117–23.

    Google Scholar 

  • El-Mariah, A. A. R. &Nursten, H. E. (1966). Thermodynamics of leather dyeing. II. Dyeing of hide powder with simple acid dyes at various temperatures.J. Soc. Dyers Colour 82, 132–9.

    Google Scholar 

  • Friedberg, S. H. &Goldstein, D. J. (1969). Thermodynamics of orcein staining of elastic fibres.Histochem. J. 1, 361–76.

    Google Scholar 

  • Gierke, H. (1884). Färberei zu mikroskopischen Zwecken.Z. wiss. Mikrosk. 1, 62–100, 372–408–497–557 and2, 164–221.

    Google Scholar 

  • Goldstein, D. J. (1962). Correlation of size of dye particle and density of substrate, with special reference to mucin staining.Stain Technol. 37, 79–93.

    Google Scholar 

  • Goldstein, D. J. (1963). An approach to the thermodynamics of histological dyeing, illustrated by experiments with azure A.Q. Jl microsc. Sci. 104, 413–39.

    Google Scholar 

  • Goldstein, D. J. (1965). Relation of effective thickness and refractive index to permeability of tissue components in fixed sections.J. R. microsc. Soc. 84, 43–54.

    Google Scholar 

  • Goldstein, D. J. (1968). On the affinity of dyes for histological substrates. In:Cell Structure and its interpretation (eds. S. M. McGee-Russell and K. F. A. Ross). London: Arnold.

    Google Scholar 

  • Goldstein, D. J. (1970). Aspects of scanning microdensitometry. I. Stray light (glare).J. Microsc. 92, 1–16.

    Google Scholar 

  • Goldstein, D. J. &Horobin, R. W. (1970). Rate and equilibrium factors in staining by Alcian Blue.Proc. R. microsc. Soc. 6, 24.

    Google Scholar 

  • Goldstein, D. J. &Horobin, R. W. (1973). Further evidence of non-equilibrium factors in Alcian Blue staining.Proc. R. microsc. Soc. 8, 35.

    Google Scholar 

  • Goldstein, D. J. &Horobin, R. W. (1974). Surface staining of cartilage by Alcian Blue, with reference to the role of microscopic dye aggregates in histological staining.Histochem. J. 6, 175–84.

    Google Scholar 

  • Heidenhain M. (1903). Färbungen. In:Encykl. der mikr. Technik. (eds. Ehrlich, P., Krause, R., Masse, M. & Rosin, H.), pp. 327–60. Berlin: Urban & Schwarzenberg.

    Google Scholar 

  • Gruen, L. C. (1972). Aggregation of copper phthalocyanine dyes.Austral. J. Chem. 25, 1661–7.

    Google Scholar 

  • Hertwig, G. (1929). Die Theorie der Färbung fixierter Präparate.Handb. der mikr. Anat. des. Mensch. 1/1, 68–89.

    Google Scholar 

  • Lenher, S. &Smith, J. E. (1935). The dyeing of cotton: particle size and substantivity.J. Am. Soc. 57, 497–503.

    Google Scholar 

  • Leppi, T. J. &Spicer, S. S. (1966). The histochemistry of mucins in certain primate salivary glands.Am. J. Anat. 118, 833–59.

    Google Scholar 

  • Lang, C. (1961).Biochemist's Handbook. London: E. & F. N. Spon.

    Google Scholar 

  • Mann, G. (1902).Physiological Histology. Oxford: Clarendon Press.

    Google Scholar 

  • McKinney, R. E. (1953). Staining bacterial polysaccharides.J. Bact. 66, 453–4.

    Google Scholar 

  • Möllendorf, W. V. &Möllendorf, M. V. (1924). Untersuchungen zur Theorie der Färbung fixierter Präparate. III. Durchtränkungs-und Niederschlags-färbung als Haupterscheinungen bei der histologischen Färbung.Ergeb. der Anat. u. Entwcklngsgesch. 25, 1–66.

    Google Scholar 

  • Monahan, A. R., Brado, J. A. &Deluca, A. F. (1972). The dimerization of a copper(II)-phthalocyanine dye in carbon tetrachloride and benzene.J. Phys. Chem. 76, 446–9.

    Google Scholar 

  • Mukerjee, P. &Ghosh, A. K. (1963). The effect of urea on methylene blue, its self-association and interaction with polyelectrolytes in aqueous solution.J. Phys. Chem. 67, 193–7.

    Google Scholar 

  • Pappenheim, A. (1918). Die morphologische Hämatologie.Folia Haematol. 22, 1–532.

    Google Scholar 

  • Quintarelli, G. &Dellovo, M. C. (1963). Mucopolysaccharide histochemistry of rat tooth germs.Histochemie 3, 195–207.

    Google Scholar 

  • Quintarelli, G., Scott, J. E. &Dellovo, M. C. (1964). The chemical and histochemical properties of Alcian Blue. III. Chemical blocking and unblocking.Histochemie 4, 99–112.

    Google Scholar 

  • Schiebe, G. &Zanker, V. (1958). Physikochemische Grundlagen der Metachromasie.Acta histochem. Supp.I, 6–35.

    Google Scholar 

  • Schnabel, E., Nothert, H. &Kuhn, H. (1962). Monomers, dimers and tetramers in solutions of phthalocyanine sulphonates. In:Recent progress in natural and synthetic colouring matters and related materials (ed. Gore, T. S.) pp. 561–72. New York: Academic Press.

    Google Scholar 

  • Scott, J. E. (1967). On the mechanism of the methyl green-pyronin stain for nucleic acids.Histochemie,9, 30–47.

    Google Scholar 

  • Scott, J. E. (1970). Histochemistry of Alcian Blue. I. Metachromasia of Alcian Blue, Astrablau and other cationic phthalocyanin dyes.Histochemie 21 277–85.

    Google Scholar 

  • Scott, J. E. &Dorling, J. (1965). Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian Blue in salt solutions.Histochemie 5, 221–33.

    Google Scholar 

  • Scott, J. E. &Willett, I. H. (1966). Binding of cationic dyes to nucleic acids and other biological polyanions.Nature (London) 209, 985–7.

    Google Scholar 

  • Seki, M. (1932). Substantive (direkte) Färbung der histologischen fixierten Präparate.Folia anat. jap. 10, 635–54.

    Google Scholar 

  • Seki, M. (1933). Anteilnahme der Dispersität der Farben und der Dichte der zu färbenden Strukturen an histologischen Färbungsvorgängen, besonders an der Elastikafärbung.Folia anat. jap. 11, 377–90.

    Google Scholar 

  • Singer, M. (1952). Factors which control the staining of tissue sections with acid and basic dyes.Int. Rev. Cytol. 1, 211–55.

    Google Scholar 

  • Spicer, S. S., Horn, R. G. &Leppi, T. J. (1967). Histochemistry of connective tissue mucopolysaccharides. In:The connective tissue (eds. Wagner, B. M. & Smith, D. E.) pp. 251–303. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Venkataraman, K. (1952).The chemistry of synthetic dyes. Vol. 2. New York: Academic Press.

    Google Scholar 

  • Vickerstaff, T. (1954).The physical chemistry of dyeing. 2nd Edn., p. 514, London: Oliver & Boyd.

    Google Scholar 

  • Zeiger, K. (1936). Kolloidhistologische Untersuchungen an Epithelien. Zellforsch.mikrosk. Anat. 24, 11–41.

    Google Scholar 

  • Zeiger, K. (1938).Physikochemische Grundlagen der histologischen Methodik. Dresden: Steinkopff.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, D.J., Horobin, R.W. Rate factors in staining by Alcian Blue. Histochem J 6, 157–174 (1974). https://doi.org/10.1007/BF01011804

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011804

Keywords

Navigation