Journal of Statistical Physics

, Volume 19, Issue 6, pp 623–632 | Cite as

Exact results for the Potts model in two dimensions

  • A. Hintermann
  • H. Kunz
  • F. Y. Wu


By considering the zeros of the partition function, we establish the following results for the Potts model on the square, triangular, and honeycomb lattices: (i) We show that there exists only one phase transition; (ii) we give an exact determination of the critical point; (iii) we prove the exponential decay of the correlation functions, in one direction at least, for all temperatures above the critical point. The results are established forq ⩾ 4, whereq is the number of components.

Key words

Potts model critical point zeros of partition function correlation function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Potts,Proc. Camb. Phil. Soc. 48:106 (1952).Google Scholar
  2. 2.
    H. A. Kramers and G. H. Wannier,Phys. Rev. 60:252 (1941).Google Scholar
  3. 3.
    D. Kim and R. I. Joseph,J. Phys. C 7:L167 (1974).Google Scholar
  4. 4.
    R. J. Baxter, H. N. V. Temperley, and S. E. Ashley,Proc. Roy. Soc. Lond. A 358:535 (1978).Google Scholar
  5. 5.
    R. J. Baxter,J. Phys. C 6:L445 (1973).Google Scholar
  6. 6.
    C. N. Yang and T. D. Lee,Phys. Rev. 87:404 (1952).Google Scholar
  7. 7.
    R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A 9:397 (1976).Google Scholar
  8. 8.
    M. Suzuki and M. E. Fisher,J. Math. Phys. 12:235 (1971).Google Scholar
  9. 9.
    J. L. Lebowitz and O. Penrose,Comm. Math. Phys. 11:99 (1968).Google Scholar
  10. 10.
    F. Y. Wu,J. Math. Phys. 18:611 (1977).Google Scholar
  11. 11.
    K. S. Chang, S. Y. Wang, and F. Y. Wu,Phys. Rev. A 4:2324 (1971).Google Scholar
  12. 12.
    M. F. Sykes and J. W. Essam,J. Math. Phys. 5:1117 (1964).Google Scholar
  13. 13.
    R. B. Israel,Comm. Math. Phys. 50:245 (1976).Google Scholar
  14. 14.
    O. Penrose and J. L. Lebowitz,Comm. Math. Phys. 39:165 (1974).Google Scholar
  15. 15.
    T. Asano,Phys. Rev. A 4:1409 (1970).Google Scholar
  16. 16.
    A. Hintermann and C. Gruber,Physica 84A:101 (1976).Google Scholar
  17. 17.
    C. Gruber, A. Hintermann, and D. Merlini, inLecture Notes in Physics, Vol. 60, J. Ehlers and K. Hepp, eds. (Springer-Verlag, 1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • A. Hintermann
    • 1
  • H. Kunz
    • 2
  • F. Y. Wu
    • 3
  1. 1.Swiss Institute for Nuclear Research (SIN)VilligenSwitzerland
  2. 2.Laboratoire de Physique ThéoriqueEcole Polytechnique FédéraleLausanneSwitzerland
  3. 3.Department of PhysicsNortheastern UniversityBostonMassachusetts

Personalised recommendations