Advertisement

Journal of Statistical Physics

, Volume 14, Issue 2, pp 171–203 | Cite as

Variational approximations for renormalization group transformations

  • Leo P. Kadanoff
  • Anthony Houghton
  • Mehmet C. Yalabik
Articles

Abstract

Approximate recursion relations which give upper and lower bounds on the free energy are described. Optimal calculations of the free energy can then be obtained by treating parameters within the renormalization equations variationally. As an example, a particularly simple lower bound approximation which preserves the symmetry of the Hamiltonian (the one-hypercube approximation) is described. The approximation is applied to both the Ising model and the Wilson-Fisher model. At the fixed point a parameter is set variationally and critical indices are calculated. For the Ising model the agreement with the exact results atd = 2 is surprisingly good, 0.1%, and is good atd=3 and evend=4. For the Wilson-Fisher model the recursion relation is reduced to a one-dimensional integral equation which can be solved numerically givingv=0.652 atd=3, or by ɛ expansion in agreement with the results of Wilson and Fisher to leading order in ɛ. The method is also used to calculate thermodynamic functions for thed = 2 Ising model; excellent agreement with the Onsager solution is found.

Key words

Variational approximations renormalization group eigenvalues thermodynamic functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. G. Wilson and J. Kogut,Physics Reports 12c:76 (1974).Google Scholar
  2. 2.
    K. G. Wilson, inProceedings of the Cargèse Summer School on Field Theory and Critical Phenomena (1973), E. Brézin and J. Charap, eds., Gordon and Breach, New York (to be published).Google Scholar
  3. 3.
    L. P. Kadanoff, inProceedings of the Cargèse Summer School on Field Theory and Critical Phenomena (1973), E. Brézin and J. Charap, eds., Gordon and Breach, New York (to be published).Google Scholar
  4. 4.
    Th. Neimeijer and J. M. J. van Leeuwen, to be published.Google Scholar
  5. 5.
    F. J. Wegner, lectures prepared for the VII Finnish Summer School in Theoretical Solid State Physics, August 1–10, 1973, Siikajärui, Finland.Google Scholar
  6. 6.
    L. P. Kadanoff and A. Houghton,Phys. Rev. B 11:377 (1975).Google Scholar
  7. 7.
    L. P. Kadanoff,Phys. Rev. Lett. 34:1005 (1975).Google Scholar
  8. 8.
    R. P. Feynman,Statistical Mechanics: A Set of Lectures, D, Pines, ed., W. A. Benjamin, New York (1972), pp. 66–71.Google Scholar
  9. 9.
    F. J. Wegner,Phys. Rev. B 5:4529 (1972).Google Scholar
  10. 10.
    S. C. Hsu, Th. Neimeijer, and J. D. Gorton,Phys. Rev. B 11:2699 (1975).Google Scholar
  11. 11.
    T. L. Bell and K. G. Wilson, to be published.Google Scholar
  12. 12.
    K. G. Wilson and M. E. Fisher,Phys. Rev. Lett. 28:240 (1972).Google Scholar
  13. 13.
    K. G. Wilson,Phys. Rev. B 9:3174, 3184 (1971).Google Scholar
  14. 14.
    D. Jasnow and M. E. Fisher, unpublished.Google Scholar
  15. 15.
    M. E. Fisher,Kept. Prog. Phys. 30:615 (1967).Google Scholar
  16. 16.
    B. Nienhuis and M. Nauenberg,Phys. Rev. Lett. 33:944 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Leo P. Kadanoff
    • 1
  • Anthony Houghton
    • 1
  • Mehmet C. Yalabik
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidence

Personalised recommendations