Journal of Statistical Physics

, Volume 19, Issue 4, pp 349–358 | Cite as

Susceptibility of the rectangular Ising ferromagnet

  • D. B. Abraham
Articles

Abstract

The critical index valuesγ= 7/4 for the susceptibility andδ=15 for the critical isotherm are derived rigorously for the rectangular Ising ferromagnet with nearest neighbor interactions. The critical indices associated with the Fisher moment definition of the correlation length are obtained asTTc+. The index of the fluctuation sum definition of critical correlations is obtained.

Key words

Ising model lattice statistic two-dimensional systems critical indices transfer matrix correlation length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Abraham,Comm. Math. Phys. 59:17 (1978);60:181 (1978).Google Scholar
  2. 2.
    D. B. Abraham and P. Reed,Phys. Rev. Lett. 33:377 (1974);Comm. Math. Phys. 49:35 (1976).Google Scholar
  3. 3.
    D. B. Abraham,Phys. Lett. 39A:375 (1972).Google Scholar
  4. 4.
    E. Barouch, B. M. McCoy, and T. T. Wu,Phys. Rev. Lett. 31:1409 (1973); C. A. Tracy and B. M. McCoy,Phys. Rev. Lett. 31:1500 (1973); T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch,Phys. Rev. B 13:316 (1976).Google Scholar
  5. 5.
    D. B. Abraham,Phys. Lett. 43A:163 (1973).Google Scholar
  6. 6.
    G. Gallavotti,Riv. Nuovo Cimento 2:133 (1972).Google Scholar
  7. 7.
    J. L. Lebowitz,Comm. Math. Phys. 28:313 (1972).Google Scholar
  8. 8.
    D. B. Abraham and H. Kunz,Phys. Rev. Lett. 39:1011 (1977).Google Scholar
  9. 9.
    M. E. Fisher,Physica 25:521 (1959);28:172 (1962).Google Scholar
  10. 10.
    L. P. Kadanoff,Nuovo Cimento 44B:276 (1966).Google Scholar
  11. 11.
    L. Onsager,Phys. Rev. 65:117 (1944).Google Scholar
  12. 12.
    A. Messager and S. Miracle-Sole,J. Stat. Phys. 17:245 (1978).Google Scholar
  13. 13.
    B. M. McCoy and T. T. Wu,The Two-Dimensional Ising Ferromagnet (Harvard University Press, 1973).Google Scholar
  14. 14.
    M. E. Fisher and R. J. Burford,Phys. Rev. 156:583 (1967).Google Scholar
  15. 15.
    R. B. Griffiths,J. Math. Phys. 8:478, 484 (1967).Google Scholar
  16. 16.
    R. B. Griffiths,J. Chem. Phys. 43:1958 (1965).Google Scholar
  17. 17.
    L. Onsager,Nuovo Cimento (Suppl.) 6:261 (1949); C. N. Yang,Phys. Rev. 85:808 (1952); G. Bennettin, G. Gallavotti, G. Jona-Lasinio, and A. L. Stella,Comm. Math. Phys. 30:45 (1973); D. B. Abraham and A. Martin-Lof,Comm. Math. Phys. 32:245 (1973).Google Scholar
  18. 18.
    D. S. Gaunt and M. F. Sykes,Solid State Phys. 5C:1429 (1972).Google Scholar
  19. 19.
    E. R. Caianiello,Combinatorics and Renormalisation in Quantum Field Theory (W. A. Benjamin, 1973).Google Scholar
  20. 20.
    G. V. Ryazonov,Zh. Eksp. Teor. Fiz. 49:1134 (1965).Google Scholar
  21. 21.
    V. G. Vaks, A. I. Larkin, and Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 49:1180 (1965) [Sov. Phys.-JETP 22:820 (1966)].Google Scholar
  22. 22.
    M. E. Fisher,Phys. Rev. 180:594 (1969).Google Scholar
  23. 23.
    J. D. Johnson, S. Krinsky, and B. McCoy,Phys. Rev. A 8:2526 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • D. B. Abraham
    • 1
  1. 1.Department of Theoretical ChemistryUniversity of OxfordOxfordEngland

Personalised recommendations