Journal of Statistical Physics

, Volume 27, Issue 1, pp 37–56 | Cite as

On the linearity of the self-diffusion process

  • William W. Wood
  • Jerome J. Erpenbeck


Formal arguments are given that the self-diffusion process, understood as the mutual diffusion process in a system which consists of two mechanically similar species of particles, and which is at total equilibrium if the species labels are ignored, is an inherently linear, but nonlocal, transport process. There are no nonlinear Burnett effects, and the nonlocal diffusion coefficient is independent of the composition of the mixture. The present state of knowledge, from theory and from computer experiments, concerning the various quantities which appear in the formal analysis is summarized for both fluid and Lorentz systems.

Key words

Self-diffusion nonlocal effects long-time tails velocity autocorrelation function super-Burnett coefficient fluids Lorentz gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Wood, inThe Boltzmann Equation, Theory and Applications, E. G. D. Cohen and W. Thirring, eds. (Acta Physica Austriaca, Suppl. X), (Springer, Berlin, 1973), p. 451.Google Scholar
  2. 2.
    J. L. Lebowitz and H. Spohn,J. Stat. Phys. 19:633 (1978).Google Scholar
  3. 3.
    J. R. Dorfman, inFundamental Problems in Statistical Mechanics III, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1975), p. 277.Google Scholar
  4. 4.
    B. J. Berne, inPhysical Chemistry, An Advanced Treatise, Vol. VIII-BLiquid State, D. Henderson, ed. (Academic Press, New York, 1971), p. 540.Google Scholar
  5. 5.
    J. A. McLennan,Phys. Rev. A 8:1479 (1973).Google Scholar
  6. 6.
    M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren,J. Stat. Phys. 18:237 (1978).Google Scholar
  7. 7.
    J. W. Dufty, private communication.Google Scholar
  8. 8.
    N. G. van Kampen,Phys. Norwegica 5:10 (1971).Google Scholar
  9. 9.
    H. J. Raveche and J. E. Mayer,J. Chem. Phys. 52:3990 (1970).Google Scholar
  10. 10.
    L. van Hove,Phys. Rev. 95:249 (1954).Google Scholar
  11. 11.
    W. E. Alley and B. J. Alder,Phys. Rev. Lett. 43:653 (1979).Google Scholar
  12. 12.
    T. L. Hill,Statistical Mechanics, (McGraw-Hill, New York, 1956), p. 233.Google Scholar
  13. 13.
    B. J. Alder and T. E. Wainwright,Phys. Rev. Lett. 18:968 (1967);J. Phys. Soc. Jpn. 26 Suppl.:267 (1969), (Proc. Int. Conf. Stat. Mech., Kyoto, 1968);Phys. Rev. A 1:18 (1970).Google Scholar
  14. 14.
    G. Subramanian, D. Levitt, and H. T. Davis,J. Chem. Phys. 60:2 (1974); G. Subramanian and H. T. Davis,Phys. Rev. A 11:1430 (1975).Google Scholar
  15. 15.
    W. W. Wood, inFundamental Problems in Statistical Mechanics III, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1975), p. 331.Google Scholar
  16. 16.
    J. J. Erpenbeck and W. W. Wood, inStatistical Mechanics, Part B: Time-Dependent Processes, B. J. Berne, ed. (Vol. 6 ofModern Theoretical Chemistry, W. H. Miller, H. F. Schaefer III, B. J. Berne, and G. A. Segal, eds.), (Plenum, New York, 1977), p. 1.Google Scholar
  17. 17.
    D. Levesque and W. T. Ashurst,Phys. Rev. Lett. 33:277 (1974).Google Scholar
  18. 18.
    S. Toxvaerd,Phys. Rev. Lett. 43:529 (1979).Google Scholar
  19. 19.
    J. R. Dorfman and E. G. D. Cohen,Phys. Rev. Lett. 25:1257 (1970);Phys. Rev. A 6:776 (1972);12:292 (1975).Google Scholar
  20. 20.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. Lett. 25:1254 (1970);Phys. Lett. 34A:419 (1971);Phys. Rev. A 4:2055 (1971);J Stat. Phys. 15:7, 23 (1976).Google Scholar
  21. 21.
    Y. Pomeau and P. Resibois,Phys. Rev. 19:63 (1975).Google Scholar
  22. 22.
    J. R. Dorfman and H. van Beijeren, inStatistical Mechanics, Part B: Time-Dependent Processes, B. J. Berne, ed. (Plenum, New York, 1977), p. 65.Google Scholar
  23. 23.
    S. Yip,Ann. Rev. Phys. Chem. 30:547 (1979).Google Scholar
  24. 24.
    H. van Beijeren and M. H. Ernst,J. Stat. Phys. 21:125 (1979).Google Scholar
  25. 25.
    J. R. Dorfman,Studies in Statistical Mechanics, Vol. IXPerspectives in Statistical Physics (North-Holland, Amsterdam, 1981).Google Scholar
  26. 26.
    J. P. Hansen, D. Levesque, and J. J. Weis,Phys. Rev. Lett. 43:979 (1979).Google Scholar
  27. 27.
    I. M. de Schepper and M. H. Ernst,Physica 87A:35 (1977).Google Scholar
  28. 28.
    T. E. Wainwright, B. J. Alder, and D. M. Gass,Phys. Rev. A 4:233 (1971).Google Scholar
  29. 29.
    W. T. Ashurst and W. G. Hoover,Phys. Rev. Lett. 31:206 (1973);Phys. Rev. A 11:658 (1975).Google Scholar
  30. 30.
    J. L. Lebowitz and H. Spohn, private communication.Google Scholar
  31. 31.
    M. H. Ernst and A. Weyland,Phys. Lett. 34A:39 (1971).Google Scholar
  32. 32.
    C. Bruin,Phys. Rev. Lett. 29:1670 (1972);Physica 72:261 (1974).Google Scholar
  33. 33.
    J. C. Lewis and J. A. Tjon,Phys. Lett. 66A:349 (1978).Google Scholar
  34. 34.
    B. J. Alder and W. E. Alley,J. Stat. Phys. 19:341 (1978).Google Scholar
  35. 35.
    B. J. Alder, inLecture Notes in Physics, Vol. 84, L. Garrido, P. Seglar, and P. J. Shepherd, eds. (Springer, Berlin, 1978), p. 169.Google Scholar
  36. 36.
    W. E. Alley, thesis Studies in Molecular Dynamics of the Friction Coefficient and the Lorentz Gas, University of California, Lawrence Livermore National Laboratory, Livermore, California, 1979.Google Scholar
  37. 37.
    L. A. Bunimovich and Y. G. Sinai,Commun. Math. Phys. 78:479 (1981); Y. G. Sinai,Ann. N.Y. Acad. Sci., Nonlinear Dynamics (1980), p. 143.Google Scholar
  38. 38.
    I. M. de Schepper, H. van Beijeren, and M. H. Ernst,Physica 75:1 (1974); I. M. de Schepper, thesis Generalized Hydrodynamics of the Diffusion Process, Nijmegen (1974); I. M. de Schepper and M. H. Ernst,Physica 93A:611 (1978).Google Scholar
  39. 39.
    I. M. de Schepper and M. H. Ernst,Physica 98A:189 (1979).Google Scholar
  40. 40.
    T. Keyes and I. Oppenheim,Physica 70:100 (1973); H. H-H. Yuan and I. Oppenheim,Ibid. 90A:1, 21, 561 (1978).Google Scholar
  41. 41.
    J. W. Dufty and J. A. McLennan,Phys. Rev. A 9:1266 (1974).Google Scholar
  42. 42.
    B. J. Alder, private communication.Google Scholar
  43. 43.
    M. H. Ernst and H. van Beijeren,J. Stat. Phys.,26:1 (1981).Google Scholar
  44. 44.
    J. L. Lebowitz, inStatistical Mechanics: New Concepts, New Problems, New Applications, S. A. Rice, K. F. Freed, and J. C. Light, eds. (University of Chicago Press, Chicago, 1972), p. 41.Google Scholar
  45. 45.
    J. J. Erpenbeck and W. W. Wood,J. Stat. Phys.,24:455 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • William W. Wood
    • 1
  • Jerome J. Erpenbeck
    • 1
  1. 1.Los Alamos National LaboratoryUniversity of CaliforniaLos Alamos

Personalised recommendations