Journal of Statistical Physics

, Volume 19, Issue 5, pp 511–523 | Cite as

Open quantum systems with time-dependent Hamiltonians and their linear response

  • E. B. Davies
  • H. Spohn
Articles

Abstract

We give a rigorous (Hamiltonian) treatment of a quantum system weakly coupled to an infinite free reservoir and subject to an external time-dependent driving potential varying on the scale of dissipation. The linear response of the system initially in thermal equilibrium is determined and compared with the usual expressions of linear response theory.

Key words

Open quantum systems time-dependent Hamiltonians linear response. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kubo,J. Phys. Soc. Japan 12:570 (1957).Google Scholar
  2. 2.
    R. Kubo, inLectures in Theoretical Physics (Boulder Summer Institute for Theoretical Physics, 1958) (Interscience, New York, 1959), Vol. 1, p. 120.Google Scholar
  3. 3.
    R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).Google Scholar
  4. 4.
    J. L. Lebowitz, inStatistical Mechanics. New Concepts, New Problems, New Applications, S. A. Rice, K. F. Freed, and J. C. Light, eds. (The University of Chicago Press, 1972).Google Scholar
  5. 5.
    J. Naudt, A. Verbeure, and R. Weder,Comm. Math. Phys. 44:87 (1975).Google Scholar
  6. 6.
    A. Verbeure and R. Weder,Comm. Math. Phys. 44:101 (1975).Google Scholar
  7. 7.
    J. L. Lebowitz and A. Shimony,Phys. Rev. 128:1945 (1962).Google Scholar
  8. 8.
    E. B. Davies,Comm. Math. Phys. 39:91 (1974).Google Scholar
  9. 9.
    E. B. Davies,Math. Ann. 291:147 (1976).Google Scholar
  10. 10.
    H. Spohn and J. L. Lebowitz, inAdvances in Chemical Physics (Wiley, New York, to appear).Google Scholar
  11. 11.
    R. S. Phillips,Trans. Am. Math. Soc. 74:199 (1954).Google Scholar
  12. 12.
    K. Yosida,Functional Analysis (Springer, Berlin, 1965).Google Scholar
  13. 13.
    M. Born and V. Fock,Z. Physik 51:165 (1928).Google Scholar
  14. 14.
    T. Kato,J. Phys. Soc. Japan 5:435 (1950).Google Scholar
  15. 15.
    T. Kato,Perturbation Theory of Linear Operators (Springer, Berlin, 1966).Google Scholar
  16. 16.
    H. Spohn,Lett. Math. Phys. 2:33 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • E. B. Davies
    • 1
    • 2
  • H. Spohn
    • 3
  1. 1.Mathematical InstituteOxford
  2. 2.Department of MathematicsPrinceton UniversityUK
  3. 3.Department of PhysicsPrinceton UniversityUK

Personalised recommendations