Journal of Statistical Physics

, Volume 52, Issue 5–6, pp 1285–1305 | Cite as

Depolarized light scattering from liquids: Rotations, collisions, and hydrodynamics

  • Daniel Kivelson


VH depolarized light scattering from liquids composed of symmetric top molecules is discussed. The dielectric fluctuations which give rise to the spectrum form an orientational and collisional (or intermolecular) contribution, and cross-correlation between the two can occur. The problem of disentangling the orientational from the collisional effects is shown to be possible, at least within the context of a generalized hydrodynamic model, because of the coupling of rotations and intermolecular interactions to hydrodynamic shear modes. A simple generalized hydrodynamic model is proposed which is successful in describing the observed spctra with an appropriate number of theoretical transport coefficients treated as adjustable parameters. Though this model is quite successful, and though the coefficients can all be described in physically meaningful and mathematically precise molecular terms, it must still be taken as a phenomenological theory until the fitted values of the coefficients can be compared with values calculated from the molecular expressions.

Key words

Light scattering collision induced scattering depolarized scattering relaxation in liquids hydrodynamic modes molecular rotations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Levine and G. Birnbaum,Phys. Rev. Lett. 20:439 (1968); J. P. McTague and G. Birnbaum,Phys. Rev. Lett. 21:661 (1968).Google Scholar
  2. 2.
    B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976).Google Scholar
  3. 3.
    P. J. Chappell and D. Kivelson,J. Chem. Phys. 76:1742 (1982).Google Scholar
  4. 4.
    P. A. Madden,Mol. Phys. 36:365 (1978).Google Scholar
  5. 5.
    G. D. Patterson and G. R. Alms,Macromolecules 10:1237 (1977).Google Scholar
  6. 6.
    G. Fytas, C. H. Wang, D. Lilge and Th. Dorfmüller,J. Chem. Phys. 75:4247.Google Scholar
  7. 7.
    P. Bezot, C. Hesse-Bezot, and B. Quentrec,Mol. Phys. 43:1407 (1981).Google Scholar
  8. 8.
    P. A. Madden and D. J. Tildesley,Mol. Phys. 55:969 (1985).Google Scholar
  9. 9.
    D. Frenkel and J. P. McTague,J. Chem. Phys. 72:2801 (1980).Google Scholar
  10. 10.
    P. J. Chappell, M. P. Alien, R. I. Hallem, and D. Kivelson,J. Chem. Phys. 74:5929 (1981).Google Scholar
  11. 11.
    D. Kivelson, inRotational Motions in Small and Large Molecules, T. Dorfmuller and R. Pecora, eds. (Springer-Verlag, Heidelberg, 1988), pp. 1–14.Google Scholar
  12. 12.
    T. Keyes and D. Kivelson,J. Chem. Phys. 56:1876 (1972).Google Scholar
  13. 13.
    T. Keyes, D. Kivelson, and J. P. McTague,J. Chem. Phys. 55:4096 (1971).Google Scholar
  14. 14.
    G. P. Johari,Ann. N.Y. Acad. Sci. 279:117 (1976).Google Scholar
  15. 15.
    S. An, C. J. Montrose, and T. A. Litovitz,J. Chem. Phys. 64:3717 (1976).Google Scholar
  16. 16.
    S. J. Tsay and D. Kivelson,Mol. Phys. 29:1 (1975).Google Scholar
  17. 17.
    R. I. Hallem and D. Kivelson,Mol. Phys. 38:1411 (1979).Google Scholar
  18. 18.
    D. Frenkel, inIntermolecular Spectroscopy and the Dynamical Properties of Dense Systems, S. Van Kranendonk, ed. (North-Holland, Amsterdam, 1978).Google Scholar
  19. 19.
    L. C. Geiger and B. M. Ladanyi,J. Chem. Phys. 87:191 (1987).Google Scholar
  20. 20.
    D. W. Oxtoby and W. M. Gelbart,Mol. Phys. 29:1569 (1965).Google Scholar
  21. 21.
    H. Mori,Prog. Theor. Phys. 33:423 (1965);37:502 (1967).Google Scholar
  22. 22.
    M. P. Allen and D. Kivelson,Mol. Phys. 44:945 (1981).Google Scholar
  23. 23.
    V. Volterra,Phys. Rev. 180:156 (1969).Google Scholar
  24. 24.
    J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, New York, 1976).Google Scholar
  25. 25.
    B. V. Felderhoff and I. Oppenheim,Physica (Utrecht)31:1441 (1965).Google Scholar
  26. 26.
    M. P. Allen, P. J. Chappell, and D. Kivelson,J. Chem. Phys. 74:5942 (1981).Google Scholar
  27. 27.
    G. Briganti, D. Rocca, and M. Nardonc,Mol. Phys. 59:1259 (1986).Google Scholar
  28. 28.
    V. P. Romanov and V. A. Solovev,Opt. Spectrosc. 29:470 (1970); see also C. Vaucamps, J. Chabrat, L. Letamendia, G. Nouchi, and J. Rouch,J. Phys. (Paris)37:1197 (1976).Google Scholar
  29. 29.
    R. MacPhail and D. Kivelson,Mol. Phys. 54:1203 (1985).Google Scholar
  30. 30.
    N. K. Ailawadi,J. Chem. Phys. 56:2106 (1972).Google Scholar
  31. 31.
    N. D. Gershon and I. Oppenheim,J. Chem. Phys. 59:1337 (1973).Google Scholar
  32. 32.
    H. C. Andersen and R. Pecora,J. Chem. Phys. 54:2584 (1971);55:1496 (1971).Google Scholar
  33. 33.
    B. Quentrec,J. Phys. (Paris)37:1255 (1976);Phys. Rev. A 15:1304 (1977).Google Scholar
  34. 34.
    B. Quentrec and P. Bezot,Mol. Phys. 39:427 (1980).Google Scholar
  35. 35.
    P. Bezot, C. Hesse-Bezot, N. Ostrowsky, and B. Quentrec,Mol. Phys. 39:549 (1980).Google Scholar
  36. 36.
    C. H. Wang,Mol. Phys. 41:541 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Daniel Kivelson
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaLos Angeles

Personalised recommendations