Journal of Statistical Physics

, Volume 28, Issue 1, pp 43–65 | Cite as

Classical coulomb systems near a plane wall. I

  • B. Jancovici


The equilibrium structure of classical Coulomb systems bounded by a plane wall is studied near that wall. Several models are considered: the two-dimensional one-component plasma at a special value of the coupling constant (which makes the model exactly soluble), the two-dimensional and three-dimensional one-component and two-component plasmas in the weak-coupling limit (a Debye-Hückel type of approach is then used). Along a wall, the pair correlation functions decay only as an inverse power of the distancer, namely, asr −v for av-dimensional system (v=2,3). The one-body densities are also studied; the first BGY equation is used.

Key words

Coulomb systems plasmas surface properties walls correlations density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980).Google Scholar
  2. 2.
    D. C. Brydges and P. Federbush,Commun. Math. Phys. 73:197 (1980).Google Scholar
  3. 3.
    J. Ginibre,J. Math. Phys. 6:440 (1965).Google Scholar
  4. 4.
    B. Jancovici,Phys. Rev. Lett. 46:386 (1981).Google Scholar
  5. 5.
    A. Alastuey and B. Jancovici,J. Phys. (Paris) 42:1 (1981).Google Scholar
  6. 6.
    B. Jancovici,J. Phys. (Paris) Lett. 42:L-223 (1981).Google Scholar
  7. 7.
    I. M. Gelfand and G. E. Shilov,Generalized Functions (Academic Press, New York, 1964).Google Scholar
  8. 8.
    P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw Hill, New York, 1953).Google Scholar
  9. 9.
    C. Deutsch and M. Lavaud,Phys. Rev. Lett. 31:921 (1973).Google Scholar
  10. 10.
    M. Navet, E. Jamin, and M. R. Feix,J. Phys. (Paris) Lett. 41:L-69 (1980).Google Scholar
  11. 11.
    Ph. Choquard, P. Fabre, and Ch. Gruber,J. Stat. Phys. 23:405 (1980).Google Scholar
  12. 12.
    E. H. Hauge and P. C. Hemmer,Phys. Norv. 5:109 (1971).Google Scholar
  13. 13.
    L. Blum, D. Henderson, J. L. Lebowitz, Ch. Gruber, and Ph. A. Martin,J. Chem. Phys. 75:5974 (1981).Google Scholar
  14. 14.
    Ch. Gruber, J. L. Lebowitz, and Ph. A. Martin,J. Chem. Phys. 75:944 (1981).Google Scholar
  15. 15.
    F. Stern and W. E. Howard,Phys. Rev. 163:816 (1967).Google Scholar
  16. 16.
    A. L. Fetter,Phys. Rev. B 10:3739 (1974).Google Scholar
  17. 17.
    D. Henderson and L. Blum,J. Chem. Phys. 69:5441 (1978).Google Scholar
  18. 18.
    D. Henderson, L. Blum, and W. R. Smith,Chem. Phys. Lett. 63:381 (1979).Google Scholar
  19. 19.
    D. Henderson, L. Blum, D. A. McQuarrie, and W. Olivares,Chem. Phys. Lett. 71:569 (1980).Google Scholar
  20. 20.
    S. L. Carnie, D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham,J. Chem. Phys. 74:1472 (1981).Google Scholar
  21. 21.
    T. L. Croxton and D. A. McQuarrie,Mol. Phys. 42:141 (1981).Google Scholar
  22. 22.
    C. W. Outhwaite, L. B. Bhuiyan, and S. Levine,J. C. S. Faraday II 76:1388 (1980), and references quoted there.Google Scholar
  23. 23.
    R. L. Guernsey,Phys. Fluids 13:2089 (1970).Google Scholar
  24. 24.
    A. S. Usenko and I. P. Yakimenko,Sov. Tech. Phys. Lett. 5:549 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • B. Jancovici
    • 1
    • 2
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité de Paris-SudOrsayFrance
  2. 2.Laboratoire associé au Centre National de la Recherche ScientifiqueFrance

Personalised recommendations