Journal of Statistical Physics

, Volume 31, Issue 2, pp 389–407 | Cite as

Remarks on the independence of the free energy from crystalline boundary conditions in the two-dimensional one-component plasma

  • S. Albeverio
  • D. Dürr
  • D. Merlini


We study the two-dimensional one-component plasma. We show that given a bound on the one-particle correlation functions in the thermodynamic limit the canonical free energy is independent or free of the Dobrushin-type boundary conditions obtained by putting outside the vessel a regular configuration of fixed charges.

Key words

Statistical mechanics two-dimensional classical Coulomb systems one-component plasma Dobrushin boundary conditions free energy two-dimensional crystals jellium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Choquard, Selected topics on the equilibrium mechanics of Coulomb systems, pp. 347–407, in Gabor Kalman, P. Carini, eds.,Strongly Coupled Plasmas (Plenum Press, New York, 1978).Google Scholar
  2. 2.
    E. H. Lieb and H. Narnhofer,J. Slat. Phys. 12:291–310 (1975).Google Scholar
  3. 3.
    R. R. Sari and D. Merlini,J. Stat. Phys. 14:91–100 (1976).Google Scholar
  4. 4.
    E. P. Wigner,Trans. Faraday Soc. 34:678 (1938).Google Scholar
  5. 5.
    R. R. Sari, D. Merlini, and R. Calinon,J. Phys. A 9:1539–1551 (1976).Google Scholar
  6. 6.
    J. P. Hansen and E. Pollock,Phys. Rev. A 8:3110 (1973).Google Scholar
  7. 7.
    H. Kunz,(Leipzig) Ann. Phys. 85:303–335 (1974).Google Scholar
  8. 8.
    R. B. Griffiths, pp. 7–109 inPhase Transitions and Critical Phenomena, Vol. 1, Ed. C. Domb, M. S. Green (Academic Press, London-New York, 1972).Google Scholar
  9. 9.
    M. Fisher and J. Lebowitz,Commun. Math. Phys. 19:251–272 (1970).Google Scholar
  10. 10.
    F. Guerra, L. Rosen, and B. Simon,Ann. Inst. H. Poincaré 15:231–334 (1976).Google Scholar
  11. 11.
    S. Albeverio and R. Høegh-Krohn,Commun. Math. Phys. 68:95–128 (1979).Google Scholar
  12. 12.
    J. Glimm, A. Jaffe,Quantum Physics (Springer, Berlin, 1981).Google Scholar
  13. 13.
    O. Bratteli and D. Robinson,Operator Algebras and Quantum Statistical Mechanics (Springer, Berlin, 1981).Google Scholar
  14. 14.
    R. Calinon, Ph. Choquard, D. Jamin, and J. Navet, inOrdering in Two-Dimensions, Ed. S. K. Sinha (North Holland, Amsterdam, 1980).Google Scholar
  15. 15.
    A. Alastuey and B. Jancovici,J. Stat. Phys. 24:443–449 (1981).Google Scholar
  16. 16.
    Ch. Gruber and Ph. Martin,Ann. Phys. (N.Y.) 131:56 (1981).Google Scholar
  17. 17.
    Ph. Choquard, private CommunicationGoogle Scholar
  18. 18.
    S. Albeverio, F. Martinelli, and D. Merlini, in preparation.Google Scholar
  19. 19.
    F. Martinelli and D. Merlini, in preparation.Google Scholar
  20. 20.
    S. Chakravarty and C. Dasgupta,Phys. Rev. B 22:369 (1980).Google Scholar
  21. 21.
    B. Jancovici,Phys. Rev. Lett. 46: 386–388 (1981).Google Scholar
  22. 22.
    F. Fricker,Einführung in die Gitterpunktlehre (Birkhäuser, Basel, 1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • S. Albeverio
    • 1
  • D. Dürr
    • 1
  • D. Merlini
    • 1
  1. 1.Mathematisches InstitutRuhr-UniversitätBochum 1Federal Republic of Germany

Personalised recommendations