Journal of Statistical Physics

, Volume 23, Issue 4, pp 463–482 | Cite as

Fluctuating hydrodynamic equations of mixed and of chemically reacting gases

  • Hiroshi Ueyama


The method of the nonlinear Langevin equation is generalized to ordinary mixed and to chemically reacting gases. The stochastic Boltzmann equations of these gases, the fluctuating hydrodynamic equations of mixed gases, and the Langevin equations for the number density of each component of a reaction-diffusion system are obtained.

Key words

Langevin equation mixed gas chemical reaction Boltzmann equation hydrodynamics fluctuation diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Glansdorff and I. Prigogine,Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, London, 1971).Google Scholar
  2. 2.
    J. Ross and P. Mazur,J. Chem. Phys. 35:19 (1961), and references cited therein.Google Scholar
  3. 3.
    G. Nicolis,J. Stat. Phys. 6:195 (1972).Google Scholar
  4. 4.
    M. Malek-Mansour and G. Nicolis,J. Stat. Phys. 13:197 (1975).Google Scholar
  5. 5.
    G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley-Interscience, New York, 1977).Google Scholar
  6. 6.
    R. F. Jox and G. E. Uhlenbeck,Phys. Fluids 13:1893, 2881 (1970).Google Scholar
  7. 7.
    M. Kac, inThe Boltzmann Equation (Acta Physica Austriaca, Suppl. X), E. D. G. Cohen and W. Thirring, eds. (Springer-Verlag, Vienna, 1973); G. Uhlenbeck,ibid. Google Scholar
  8. 8.
    M. Malek-Mansour, L. Brenig, and W. Horsthemke,Physica 88A:407 (1977).Google Scholar
  9. 9.
    H. Ueyama,J. Stat. Phys. 22:1 (1980).Google Scholar
  10. 10.
    M. Kac,Probability and Related Topics in Physical Sciences (Interscience, London, 1959).Google Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, Oxford, 1959).Google Scholar
  12. 12.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge, 1970).Google Scholar
  13. 13.
    L. Waldmann, inHandbuch der Physik, Band XII, S. Flügge, ed. (Springer, Berlin, 1958).Google Scholar
  14. 14.
    J. Foch,Phys. Fluids 14:893 (1971).Google Scholar
  15. 15.
    J. Keizer,J. Chem. Phys. 63:5037 (1975).Google Scholar
  16. 16.
    J. Keizer,J. Chem. Phys. 64:1679 (1976).Google Scholar
  17. 17.
    J. Keizer,Phys. Fluids 21:198 (1978).Google Scholar
  18. 18.
    C. W. Gardiner,J. Stat. Phys. 15:451 (1976).Google Scholar
  19. 19.
    S. Grossmann,J. Chem. Phys. 65:2007 (1976).Google Scholar
  20. 20.
    K. M. van Vliet,J. Math. Phys. 12:1981 (1971).Google Scholar
  21. 21.
    L. Arnold,Stochastic Differential Equations (John Wiley, New York, 1959).Google Scholar
  22. 22.
    I. Prigogine and R. Lefever,J. Chem. Phys. 48:1695 (1968).Google Scholar
  23. 23.
    V. Zaitsev and M. Schliomis,Sov. Phys. — JETP 32:866 (1971).Google Scholar
  24. 24.
    R. Graham,Phys. Rev. Lett. 31:1479 (1973);Phys. Rev. A 10:1962 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Hiroshi Ueyama
    • 1
  1. 1.Department of Physics, College of General EducationOsaka UniversityToyonakaJapan

Personalised recommendations