Journal of Statistical Physics

, Volume 53, Issue 1–2, pp 439–455 | Cite as

Independent oscillator model of a heat bath: Exact diagonalization of the Hamiltonian

  • G. W. Ford
  • J. T. Lewis
  • R. F. O'Connell
Articles

Abstract

The problem of a quantum oscillator coupled to an independent-oscillator model of a heat bath is discussed. The transformation to normal coordinates is explicitly constructed using the method of Ullersma. With this transformation an alternative derivation of an exact formula for the oscillator free energy is constructed. The various contributions to the oscillator energy are calculated, with the aim of further understanding this formula. Finally, the limitations of linear coupling models, such as that used by Ullersma, are discussed in the form of some critical remarks.

Key words

Coupled oscillators heat bath free energy quantum dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. W. Ford, J. T. Lewis, and R. F. O'Connell,Phys. Rev. Lett. 55:2273 (1985).Google Scholar
  2. 2.
    G. W. Ford, J. T. Lewis, and R. F. O'Connell,Phys. Rev. A 38:4419 (1988).Google Scholar
  3. 3.
    N. G. van Kampen,K. Dan. Videnskab. Selsk. Mat. Fys. Medd. 26 (15) (1951).Google Scholar
  4. 4.
    P. Ullersma,Physica 32:27, 56, 74, 90 (1966).Google Scholar
  5. 5.
    G. W. Ford, J. T. Lewis, and R. F. O'Connell,Ann. Phys. (N.Y.) 185:270 (1988).Google Scholar
  6. 6.
    E. T. Whittaker,Analytical Dynamics, 4th ed. (Cambridge University Press, Cambridge, 1937), Chapter VII.Google Scholar
  7. 7.
    H. Goldstein,Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1980), Chapter 6.Google Scholar
  8. 8.
    V. B. Magalinskij,Zh. Eksp. Teor. Fiz. 36:1942 (1959) [Sov. Phys. JETP 9:1381 (1959)].Google Scholar
  9. 9.
    R. P. Feynman and F. L. Vernon,Ann. Phys. (N.Y.) 24:118 (1963).Google Scholar
  10. 10.
    F. Schwabl and W. Thirring,Ergeh. Exakt. Naturwiss. 36:219 (1964).Google Scholar
  11. 11.
    J. Meixner, inStatistical Mechanics of Equilibrium and Nonequilibrium, J. Meixner, ed. (North-Holland, Amsterdam, 1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • G. W. Ford
    • 1
  • J. T. Lewis
    • 2
  • R. F. O'Connell
    • 3
  1. 1.Department of PhysicsUniversity of MichiganAnn Arbor
  2. 2.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland
  3. 3.Department of Physics and AstronomyLouisiana State UniversityBaton Rouge

Personalised recommendations