Advertisement

Journal of Statistical Physics

, Volume 53, Issue 1–2, pp 109–124 | Cite as

The stochastic Liouville equation and Padé approximants

  • A. J. Dammers
  • Y. K. Levine
  • J. A. Tjon
Articles

Abstract

The applicability of Padé approximant techniques to solving the stochastic Liouville equation is discussed. The special case of an axially symmetric spin system undergoing isotropic Brownian motion is studied. Two types of expansions are explored which yield efficient algorithms for spectral simulations.

Key words

ESR spectral simulations stochastic Liouville equation Padé approximants convergence behavior roundoff errors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Berliner (ed.),Spin Labeling (Academic Press, New York).Google Scholar
  2. 2.
    J. H. Freed, inSpin Labeling, L. J. Berliner, ed. (Academic Press, New York), Chapter III.Google Scholar
  3. 3.
    J. H. Freed, inElectron Spin Relaxation in Liquids, L. T. Muus and P. W. Atkins, eds. (Plenum Press, New York, 1972), Chapter XIV.Google Scholar
  4. 4.
    R. G. Gordon and T. Messenger, inElectron Spin Relaxation in Liquids, L. T. Muus and P. W. Atkins, eds. (Plenum Press, New York, 1972), Chapter XIII.Google Scholar
  5. 5.
    G. Moro and J. H. Freed,J. Chem. Phys. 74:3757 (1981).Google Scholar
  6. 6.
    J. H. Freed, inElectron Spin Relaxation in Liquids, L. T. Muus and P. W. Atkins, eds. (Plenum Press, New York, 1972), Chapter VIII.Google Scholar
  7. 7.
    E. Meirovitchet al., J. Chem. Phys. 77:3915 (1982).Google Scholar
  8. 8.
    C. Lanczos,J. Res. Nat. Bur. Std. 45:255 (1950).Google Scholar
  9. 9.
    M. Giordano, P. Grigolini, D. Leporini, and P. Marin,Phys. Rev. A 28:2474 (1983).Google Scholar
  10. 10.
    A. J. Dammers, Y. K. Levine, and J. A. Tjon,Chem. Phys. Lett. 88:198 (1982),J. Chem. Phys. (1988) (in press).Google Scholar
  11. 11.
    H. Mori,Progr. Theor. Phys. 34:399 (1965).Google Scholar
  12. 12.
    A. Abragam,The Principles of Nuclear Magnetism (Oxford University Press, London, 1961).Google Scholar
  13. 13.
    G. A. Baker, Jr.,Essentials of Padé Approximants (Academic Press, New York, 1975).Google Scholar
  14. 14.
    P. R. Graves-Morris (ed.),Padé Approximants (Institute of Physics, London, 1973).Google Scholar
  15. 15.
    G. A. Baker, Jr., and J. L. Gammel (eds.),The Padé Approximant in Theoretical Physics (Academic Press, New York, 1970).Google Scholar
  16. 16.
    M. M. Dorio and J. H. Freed (eds.)Multiple Electron Resonance Spectroscopy (Plenum Press, New York, 1979).Google Scholar
  17. 17.
    K. V. Vasavadaet al., J. Chem. Phys. 86:647 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. J. Dammers
    • 1
  • Y. K. Levine
    • 1
  • J. A. Tjon
    • 2
  1. 1.Department of Molecular BiophysicsUniversity of UtrechtThe Netherlands
  2. 2.Institute for Theoretical PhysicsUniversity of UtrechtThe Netherlands

Personalised recommendations