Advertisement

Journal of Statistical Physics

, Volume 26, Issue 3, pp 513–525 | Cite as

On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids

  • A. Robledo
  • C. Varea
Articles

Abstract

It is shown that the variational principle for the grand potential of a nonuniform fluid as a functional of the singlet density yields the potential distribution theory for the equilibrium density. We derive the explicit form that the functional takes for a system of hard rods, and propose an approximate one for hard spheres. Attractive interactions are also considered in mean-field approximation. In all cases the pair direct correlation function of the nonuniform system is obtained and the density gradient expansion of the free energy is investigated.

Key words

Density functionals potential distribution theory nonuniform fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Widom, inStatistical Mechanics and Statistical Methods in Theory and Application, (U. Landman, ed.), (Plenum, New York, 1977), p. 33. See also Ref. 9.Google Scholar
  2. 2.
    B. Widom,J. Stat. Phys. 19:563 (1978).Google Scholar
  3. 3.
    M. M. Telo da Gama and R. Evans,Mol. Phys. 38:367 (1979).Google Scholar
  4. 4.
    C. Varea, A. Valderrama and A. Robledo,J. Chem. Phys. 73:6265 (1980).Google Scholar
  5. 5.
    C. Ebner, W. F. Saam, and D. Stroud,Phys. Rev. A,14:2264 (1976).Google Scholar
  6. 6.
    A. Robledo,J. Chem. Phys. 72:1701 (1980).Google Scholar
  7. 7.
    H. Metiu, K. Kitahara, and J. Ross, inFluctuation Phenomena, Studies in Statistical Mechanics VII, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam 1979), p. 229.Google Scholar
  8. 8.
    J. W. Cahn,Acta Metal. 9:795 (1961); F. F. Abraham,J. Chem. Phys. 64:2660 (1976); See also Refs. 7 and 9.Google Scholar
  9. 9.
    R. Evans,Adv. Phys. 28:143 (1979).Google Scholar
  10. 10.
    N. D. Mermin,Phys. Rev. 137:A1441 (1965).Google Scholar
  11. 11.
    P. Hohenberg and W. Kohn,Phys. Rev. 136:B864 (1964).Google Scholar
  12. 12.
    J. K. Percus,J. Stat. Phys. 15:505 (1976).Google Scholar
  13. 13.
    E. Thiele,J. Chem. Phys. 39:474 (1973); M. S. Wertheim,J. Math. Phys. 5:643 (1964).Google Scholar
  14. 14.
    R. Evans (private communication).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. Robledo
    • 1
  • C. Varea
    • 1
  1. 1.División de Estudios de Posgrado, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico 20, D.F.

Personalised recommendations