Journal of Statistical Physics

, Volume 24, Issue 4, pp 617–701 | Cite as

On the statistical mechanics of classical Coulomb and dipole gases

  • Jürg Fröhlich
  • Thomas Spencer


A detailed, rigorous study of the statistical mechanics-screening- and critical properties, phase diagrams, etc., of classical Coulomb monopole and dipole gases in two or more dimensions is presented. The statistical mechanics of the two-dimensionalXY and Villain models is reconsidered and related to the one of two-dimensional lattice Coulomb gases. At low temperatures and moderate densities those gases behave like dipole gases. The Kosterlitz-Thouless transition is analyzed in that perspective and characterized by an order parameter. Techniques useful for a proof of existence of such a transition in a two-dimensional hard-core Coulomb gas are developed and applied to the study of dipole gases.

Key words

Lattice Coulomb and dipole gases XY model Kosterlitz-Thouless transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Berezinskii,Sov. Phys. JETP 32:493 (1971).Google Scholar
  2. 2.
    J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).Google Scholar
  3. 3.
    J. Villain,J. Phys. (Paris) 36:581 (1975).Google Scholar
  4. 4.
    D. Brydges,Commun. Math. Phys. 58:313 (1978); D. Brydges and P. Federbush, Debye Screening, Preprint, University of Michigan, 1979.Google Scholar
  5. 5.
    J. Glimm, A. Jaffe, and T. Spencer,Commun. Math. Phys. 45:203 (1975).Google Scholar
  6. 6.
    J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase Transitions and Reflection Positivity II,J. Stat. Phys. 22:297 (1980).Google Scholar
  7. 7.
    N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17:1133 (1966).Google Scholar
  8. 8.
    N. D. Mermin,J. Math. Phys. 8:1061 (1967).Google Scholar
  9. 9.
    A. J. F. Siegert,Physica 26:30 (1960).Google Scholar
  10. 10.
    J. Fröhlich,Commun. Math. Phys. 47:233 (1976).Google Scholar
  11. 11.
    J. Fröhlich and Y. M. Park,Commun. Math. Phys. 59:235 (1978).Google Scholar
  12. 12.
    J. Dimock and J. Glimm,Adv. Math. 12:58 (1974).Google Scholar
  13. 13.
    K. Osterwalder and R. Schrader,Commun. Math. Phys. 31:83 (1973);42:281 (1975).Google Scholar
  14. 14.
    J. Fröhlich and E. H. Lieb,Commun. Math. Phys. 60:233 (1978); J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon,Commun. Math. Phys. 62:1 (1978).Google Scholar
  15. 15.
    E. Nelson, inConstructive Quantum Field Theory, G. Velo and A. S. Wightman, eds (Lecture Notes in Physics No. 25, Springer, Berlin, 1973).Google Scholar
  16. 16.
    J. Fröhlich and T. Spencer, InNew Developments in Quantum Field Theory and Statistical Mechanics, M. Levy and P. Mitter, eds. (Plenum, New York, 1977).Google Scholar
  17. 17.
    A. Messager, S. Miracle-Solé, and C. Pfister,Commun. Math. Phys. 58:19 (1978).Google Scholar
  18. 18.
    J. Bricmont, J. R. Fontaine, and L. Landau,Commun. Math. Phys. 64:49, (1978).Google Scholar
  19. 19.
    J. L. Lebowitz and O. Penrose,Commun. Math. Phys. 39:165 (1974).Google Scholar
  20. 20.
    J. Fröhlich, B. Simon, and T. Spencer,Commun. Math. Phys. 50:79 (1976).Google Scholar
  21. 21.
    J. Fröhlich, inMathematical Problems of Theoretical Physics, G. F. Dell'Antonio, S. Doplicher and G. Jona-Lasinio, eds. (Lecture Notes in Physics No. 80, Springer, Berlin, 1978).Google Scholar
  22. 22.
    J. Bricmont,J. Stat. Phys,17:289 (1977).Google Scholar
  23. 23.
    F. Dunlop,J. Stat. Phys. 21:561 (1979).Google Scholar
  24. 24.
    J. Ginibre,Commun. Math. Phys. 16:310 (1970).Google Scholar
  25. 25.
    J. Glimm and A. Jaffe,Commun. Math. Phys. 52:203 (1977).Google Scholar
  26. 26.
    O. McBryan and J. Rosen,Commun. Math. Phys. 51:97 (1976).Google Scholar
  27. 27.
    B. Simon, to appear.Google Scholar
  28. 28.
    J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,Phys. Rev. B 16:1217 (1977).Google Scholar
  29. 29.
    O. McBryan and T. Spencer,Commun. Math. Phys. 53:99 (1977).Google Scholar
  30. 30.
    D. Brydges and P. Federbush,Commun. Math. Phys. 62:79 (1978).Google Scholar
  31. 31.
    K. Symanzik, inLocal Quantum Theory, R. Jost, ed. (Academic, New York, 1969).Google Scholar
  32. 32.
    A. M. Polyakov,Phys. Lett. B 59:79 (1975).Google Scholar
  33. 33.
    M. Lüscher, DESY Preprint 1976 (unpublished).Google Scholar
  34. 34.
    J. Bellissard, private communication.Google Scholar
  35. 35.
    F. Dunlop and C. Newman,Commun. Math. Phys. 44:223 (1975).Google Scholar
  36. 36.
    G. Gallavotti, A. Martin-Løf, and S. Miracle-Solé, inStatistical Mechanics and Mathematical Problems, A. Lenard, ed. (Lecture Notes in Physics No. 20, Springer, Berlin, 1973).Google Scholar
  37. 37.
    B. Simon,The P(φ)2 Euclidean (Quantum)Field Theory (Princeton University Press, Princeton, New Jersey, 1974).Google Scholar
  38. 38.
    G. Mack and V. Petkova, Comparison of Lattice Gauge Theories with Gauge Groups ℤ2 and SU(2), DESY Preprint, 1978; see also L. G. Yaffe, Confinement in SU(N) Lattice Gauge Theories, Preprint, Princeton, 1979.Google Scholar
  39. 39.
    J. Glimm, A. Jaffe, and T. Spencer,Ann. Phys. (N.Y) 101:610 (1976);101:631 (1976).Google Scholar
  40. 40.
    E. Seiler, private communication.Google Scholar
  41. 41.
    E. K. Sklyamin, L. A. Takhtadzhyan, and L. D. Faddeev, The Quantum Inverse Problem Method I, Preprint, Steklov Mathematical Institute, Lenigrad, 1979.Google Scholar
  42. 42.
    J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  • Thomas Spencer
    • 2
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-Yvette
  2. 2.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations