Skip to main content
Log in

On the statistical mechanics of classical Coulomb and dipole gases

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A detailed, rigorous study of the statistical mechanics-screening- and critical properties, phase diagrams, etc., of classical Coulomb monopole and dipole gases in two or more dimensions is presented. The statistical mechanics of the two-dimensionalXY and Villain models is reconsidered and related to the one of two-dimensional lattice Coulomb gases. At low temperatures and moderate densities those gases behave like dipole gases. The Kosterlitz-Thouless transition is analyzed in that perspective and characterized by an order parameter. Techniques useful for a proof of existence of such a transition in a two-dimensional hard-core Coulomb gas are developed and applied to the study of dipole gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. L. Berezinskii,Sov. Phys. JETP 32:493 (1971).

    Google Scholar 

  2. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).

    Google Scholar 

  3. J. Villain,J. Phys. (Paris) 36:581 (1975).

    Google Scholar 

  4. D. Brydges,Commun. Math. Phys. 58:313 (1978); D. Brydges and P. Federbush, Debye Screening, Preprint, University of Michigan, 1979.

    Google Scholar 

  5. J. Glimm, A. Jaffe, and T. Spencer,Commun. Math. Phys. 45:203 (1975).

    Google Scholar 

  6. J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase Transitions and Reflection Positivity II,J. Stat. Phys. 22:297 (1980).

    Google Scholar 

  7. N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17:1133 (1966).

    Google Scholar 

  8. N. D. Mermin,J. Math. Phys. 8:1061 (1967).

    Google Scholar 

  9. A. J. F. Siegert,Physica 26:30 (1960).

    Google Scholar 

  10. J. Fröhlich,Commun. Math. Phys. 47:233 (1976).

    Google Scholar 

  11. J. Fröhlich and Y. M. Park,Commun. Math. Phys. 59:235 (1978).

    Google Scholar 

  12. J. Dimock and J. Glimm,Adv. Math. 12:58 (1974).

    Google Scholar 

  13. K. Osterwalder and R. Schrader,Commun. Math. Phys. 31:83 (1973);42:281 (1975).

    Google Scholar 

  14. J. Fröhlich and E. H. Lieb,Commun. Math. Phys. 60:233 (1978); J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon,Commun. Math. Phys. 62:1 (1978).

    Google Scholar 

  15. E. Nelson, inConstructive Quantum Field Theory, G. Velo and A. S. Wightman, eds (Lecture Notes in Physics No. 25, Springer, Berlin, 1973).

    Google Scholar 

  16. J. Fröhlich and T. Spencer, InNew Developments in Quantum Field Theory and Statistical Mechanics, M. Levy and P. Mitter, eds. (Plenum, New York, 1977).

    Google Scholar 

  17. A. Messager, S. Miracle-Solé, and C. Pfister,Commun. Math. Phys. 58:19 (1978).

    Google Scholar 

  18. J. Bricmont, J. R. Fontaine, and L. Landau,Commun. Math. Phys. 64:49, (1978).

    Google Scholar 

  19. J. L. Lebowitz and O. Penrose,Commun. Math. Phys. 39:165 (1974).

    Google Scholar 

  20. J. Fröhlich, B. Simon, and T. Spencer,Commun. Math. Phys. 50:79 (1976).

    Google Scholar 

  21. J. Fröhlich, inMathematical Problems of Theoretical Physics, G. F. Dell'Antonio, S. Doplicher and G. Jona-Lasinio, eds. (Lecture Notes in Physics No. 80, Springer, Berlin, 1978).

  22. J. Bricmont,J. Stat. Phys,17:289 (1977).

    Google Scholar 

  23. F. Dunlop,J. Stat. Phys. 21:561 (1979).

    Google Scholar 

  24. J. Ginibre,Commun. Math. Phys. 16:310 (1970).

    Google Scholar 

  25. J. Glimm and A. Jaffe,Commun. Math. Phys. 52:203 (1977).

    Google Scholar 

  26. O. McBryan and J. Rosen,Commun. Math. Phys. 51:97 (1976).

    Google Scholar 

  27. B. Simon, to appear.

  28. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,Phys. Rev. B 16:1217 (1977).

    Google Scholar 

  29. O. McBryan and T. Spencer,Commun. Math. Phys. 53:99 (1977).

    Google Scholar 

  30. D. Brydges and P. Federbush,Commun. Math. Phys. 62:79 (1978).

    Google Scholar 

  31. K. Symanzik, inLocal Quantum Theory, R. Jost, ed. (Academic, New York, 1969).

    Google Scholar 

  32. A. M. Polyakov,Phys. Lett. B 59:79 (1975).

    Google Scholar 

  33. M. Lüscher, DESY Preprint 1976 (unpublished).

  34. J. Bellissard, private communication.

  35. F. Dunlop and C. Newman,Commun. Math. Phys. 44:223 (1975).

    Google Scholar 

  36. G. Gallavotti, A. Martin-Løf, and S. Miracle-Solé, inStatistical Mechanics and Mathematical Problems, A. Lenard, ed. (Lecture Notes in Physics No. 20, Springer, Berlin, 1973).

    Google Scholar 

  37. B. Simon,The P(φ)2 Euclidean (Quantum)Field Theory (Princeton University Press, Princeton, New Jersey, 1974).

    Google Scholar 

  38. G. Mack and V. Petkova, Comparison of Lattice Gauge Theories with Gauge Groups ℤ2 and SU(2), DESY Preprint, 1978; see also L. G. Yaffe, Confinement in SU(N) Lattice Gauge Theories, Preprint, Princeton, 1979.

  39. J. Glimm, A. Jaffe, and T. Spencer,Ann. Phys. (N.Y) 101:610 (1976);101:631 (1976).

    Google Scholar 

  40. E. Seiler, private communication.

  41. E. K. Sklyamin, L. A. Takhtadzhyan, and L. D. Faddeev, The Quantum Inverse Problem Method I, Preprint, Steklov Mathematical Institute, Lenigrad, 1979.

    Google Scholar 

  42. J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Additional information

A Sloan Fellow, and supported in part by NSF grant No. DMR 7904355.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Spencer, T. On the statistical mechanics of classical Coulomb and dipole gases. J Stat Phys 24, 617–701 (1981). https://doi.org/10.1007/BF01011379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011379

Key words

Navigation