Advertisement

Journal of Statistical Physics

, Volume 23, Issue 3, pp 267–280 | Cite as

Lower bounds on the cluster size distribution

  • Michael Aizenman
  • FranÇois Delyon
  • Bernard Souillard
Articles

Abstract

We rigorously prove that the probabilityP n that the origin of ad-dimensional lattice belongs to a cluster of exactlyn sites satisfiesP n > exp(−αn (d−1)/d ) whenever percolation occurs. This holds for the usual (noninteracting) percolation models for any concentrationp > p c , as well as for the equilibrium states of lattice spin systems with quite general interactions. Such a lower bound applies also if no percolation occurs, but if it appears in some other phase of the system.

Key words

Percolation Gibbs states cluster size distribution nucleation stochastic geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kunz and B. Souillard,Proceedings of the Third International Conference on Collective Phenomena, Ann. NY Acad. Sci. 337; D. Stauffer,Phys. Rep. 54:1 (1979).Google Scholar
  2. 2.
    K. R. Bauchspiess and D. Stauffer,J. Aerosol. Sci. 9 (1978).Google Scholar
  3. 3.
    A. Coniglio, H. E. Stanley, and W. Klein,Phys. Rev. Lett. 42:518 (1979).Google Scholar
  4. 4.
    A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo,Commun. Math. Phys. 51:315 (1976);J. Phys. A 10:205 (1977).Google Scholar
  5. 5.
    L. Russo,Commun. Math. Phys. 67:251 (1979).Google Scholar
  6. 6.
    M. Aizenman,Phys. Rev. Lett. 43:407 (1979);Commun. Math. Phys., to appear; Y. Higuchi, inProceedings of the Estergon Conference on Random Fields (June 1979), to appear.Google Scholar
  7. 7.
    J. L. Lebowitz and O. Penrose,J. Stat. Phys. 16:321 (1977).Google Scholar
  8. 8.
    M. E. Fisher and J. W. Essam,J. Math. Phys. 2:609 (1961).Google Scholar
  9. 9.
    D. Stauffer,Z. Physik B 25:391 (1976).Google Scholar
  10. 10.
    A. Flamang,Z. Physik B 28:47 (1977).Google Scholar
  11. 11.
    K. Binder,Ann. Phys. (N.Y.) 98:390 (1976);J. Stat. Phys. 15:267 (1976).Google Scholar
  12. 12.
    J. Hoshen, D. Stauffer, G. H. Bishop, R. J. Harrison, and G. D. Quinn,J. Phys. A 12:1285 (1979).Google Scholar
  13. 13.
    H. Kunz and B. Souillard,Phys. Rev. Lett. 40:133 (1978);J. Stat. Phys. 19:77 (1978).Google Scholar
  14. 14.
    F. Delyon,J. Stat. Phys. 41:727 (1979).Google Scholar
  15. 15.
    R. L. Dobrushin,Teorija Verojatn. i ee Prim. 13:201 (1968); O. E. Lanford III and D. Ruelle,Commun. Math. Phys. 13:194 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Michael Aizenman
    • 1
  • FranÇois Delyon
    • 2
  • Bernard Souillard
    • 2
  1. 1.IHESBures-sur-YvetteFrance
  2. 2.Centre de Physique Theorique (Equipe de Recherche du CNRS No. 174)Ecole PolytechniquePalaiseauFrance

Personalised recommendations