Skip to main content
Log in

The kinetic boundary layer for the Klein-Kramers equation; A new numerical approach

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We explore a numerical technique for determining the structure of the kinetic boundary layer of the Klein-Kramers equation for noninteracting Brownian particles in a fluid near a wall that absorbs the Brownian particles. The equation is of interest in the theory of diffusion-controlled reactions and of the coagulation of colloidal suspensions. By numerical simulation of the Langevin equation equivalent to the Klein-Kramers equation we amass statistics of the velocities at the first return to the wall and of the return times for particles injected into the fluid at the wall with given velocities. The data can be used to construct the solutions of the standard problems at an absorbing wall, the Milne and the albedo problem. We confirm and extend earlier results by Burschka and Titulaer, obtained by a variational method vexed by the slow convergence of the underlying eigenfunction expansion. We briefly discuss some further boundary layer problems that can be attacked by exploiting the results reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cercignani,Theory and Application of the Boltzmann Equation (Scott. Acad. Press, Edinburgh, 1975), Chap. VI; C. Cercignani,Trans. Theor. Stat. Phys. 6:29 (1977); R. L. Bowden and W. L. Cameron,Trans. Theor. Stat. Phys. 8:45 (1979); T. Ytrehus, J. J. Smolderen, and J. F. Wendt,Phys. Fluids 18:1253 (1975).

    Google Scholar 

  2. J. J. Duderstadt and W. R. Martin,Transport Theory (Wiley, New York, 1979), Chap. II.

    Google Scholar 

  3. I. Kuščer, N. McCormick, and G. Summerfield,Ann. Phys. (N.Y.) 30:411 (1965).

    Google Scholar 

  4. L. Waldmann and H. Vestner,Physica 99 A:1 (1979).

    Google Scholar 

  5. O. Klein,Ark. Math. Astron. Fys. 16(5):1 (1922); H. A. Kramers,Physica 7:284 (1940).

    Google Scholar 

  6. M. C. Wang and G. E. Uhlenbeck,Rev. Mod. Phys. 17:323 (1945).

    Google Scholar 

  7. S. H. Northrup and J. T. Hynes,J. Chem. Phys. 68:3203 (1978); for a recent review see D. F. Calef and J. M. Deutch,Ann. Rev. Phys. Chem. 34:493 (1983).

    Google Scholar 

  8. M. Sitarski and J. H. Seinfeld,J. Colloid Int. Sci. 61:261 (1977).

    Google Scholar 

  9. C. D. Pagani,Boll. Un. Mat. Ital. 3(4):961 (1970).

    Google Scholar 

  10. M. A. Burschka and U. M. Titulaer,Physica 112A:315 (1982).

    Google Scholar 

  11. R. Beals and V. Protopopescu,J. Stat. Phys. 32:565 (1983).

    Google Scholar 

  12. M. A. Burschka and U. M. Titulaer,J. Stat. Phys. 25:569 (1981)

    Google Scholar 

  13. M. A. Burschka and U. M. Titulaer,J. Stat. Phys. 26:59 (1981)(b).

    Google Scholar 

  14. U. M. Titulaer, to be published.

  15. R. E. Marshak,Phys. Rev. 71:443 (1947).

    Google Scholar 

  16. K. Razi Naqvi, S. Waldenstrøm, and K. J. Mork, to be published, and earlier work quoted there.

  17. M. J. Lindenfeld and B. Shizgal,Phys. Rev. A27:1657 (1983).

    Google Scholar 

  18. S. Harris,J. Chem. Phys. 75:3103 (1981), and earlier work quoted there.

    Google Scholar 

  19. W. Feller,An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed. (Wiley, New York, 1968), index entries to “first passage times” and “ruin problem.”

    Google Scholar 

  20. U. M. Titulaer,Physica 91A:321 (1978).

    Google Scholar 

  21. G. Birkhoff and S. MacLane,A Survey of Modern Algebra, revised ed. (Macmillan, New York, 1953).

    Google Scholar 

  22. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), Chap. VIII.

    Google Scholar 

  23. U. M. Titulaer,Proceedings of the first Escuela Mexicana de Fisica Estadistica, R. Peralta-Fabi, ed. (Soc. Mex. de Física, Mexico D.F., 1983), p. 221.

    Google Scholar 

  24. U. M. Titulaer.J. Chem. Phys. 78:1004 (1983); the result is implicit in G. E. Uhlenbeck and L. S. Ornstein,Phys. Rev. 36:823 (1930).

    Google Scholar 

  25. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products, 4th ed. (Academic Press, New York, 1980), 3.462.1.

    Google Scholar 

  26. R. Beals,J. Math. Phys. 22:954 (1981).

    Google Scholar 

  27. Y. S. Mayya and D. C. Sahni,J. Chem. Phys. 79:2302 (1983); for a criticism of this paper see V. Protopopescu, R. Cole and T. Keyes, to be published.

    Google Scholar 

  28. R. Beals,J. Diff. Eqs., to be published.

  29. W. Greenberg and C. V. M. van der Mee,Transp. Th. Stat. Phys. 11:155 (1983); W. Greenberg, C.V. M. van der Mee, and P. F. Zweifel,Int. Eqs. Oper. Th. 7:60 (1984). These papers also contain references to earlier rigorous results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selinger, J.V., Titulaer, U.M. The kinetic boundary layer for the Klein-Kramers equation; A new numerical approach. J Stat Phys 36, 293–319 (1984). https://doi.org/10.1007/BF01010986

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010986

Key words

Navigation