Journal of Statistical Physics

, Volume 31, Issue 1, pp 129–140 | Cite as

The two-dimensional one-component plasma at Γ=2: Behavior of correlation functions in strip geometry

  • P. J. Forrester
  • B. Jancovici
  • E. R. Smith


This paper considers a strip of two-dimensional one-component plasma of particles of chargeq at a temperatureT such that the coupling constant be Γ=q2/kBT = 2. The strip is of finite width and infinite length and bears charge densities on either edge. Inside the strip and on one side, the dielectric constant is 1; on the other side of the strip, it may be either 1 or 0 (in the latter case, image forces play an important role). The free energy as well as the one-particle and two-particle distribution functions can be exactly computed. They obey a variety of sum rules reflecting the Coulombic behavior of the system. At large separations the truncated two-particle distribution function behaves with algebraically decaying oscillations. The strip of finite width in fact is correlated along the strip much as a one-dimensional system is correlated.

Key words

Coulomb systems plasmas surface properties strip geometry correlations sum rules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Jancovici,Phys. Rev. Lett. 46:386 (1981).Google Scholar
  2. 2.
    A. Alastuey and B. Jancovici,J. Phys. (Paris) 42:1 (1981).Google Scholar
  3. 3.
    E. R. Smith,Phys. Rev. A 24:2851 (1981).Google Scholar
  4. 4.
    E. R. Smith,J. Phys. A. (Math. Gen.) 15:1271 (1982).Google Scholar
  5. 5.
    P. J. Forrester and E. R. Smith,J. Phys. A. (Math. Gen.) 15:3861 (1982).Google Scholar
  6. 6.
    B. Jancovici,J. Phys. Lett. 42:L-223 (1981).Google Scholar
  7. 7.
    B. Jancovici,J. Stat. Phys. 28:43 (1982).Google Scholar
  8. 8.
    B. Jancovici,J. Stat. Phys. 29:263 (1982).Google Scholar
  9. 9.
    Ch. Gruber, J. L. Lebowitz, and Ph. Martin,J. Chem. Phys. 75:944 (1981).Google Scholar
  10. 10.
    D. Henderson and L. Blum,Chem. Phys. Lett. 85:374 (1982).Google Scholar
  11. 11.
    L. Blum, D. Henderson, J. L. Lebowitz, Ch. Gruber, and Ph. Martin,J. Chem. Phys. 75:5974 (1981).Google Scholar
  12. 12.
    L. Blum, Ch. Gruber, J. L. Lebowitz, and Ph. Martin,Phys. Rev. Lett. 48:1769 (1982).Google Scholar
  13. 13.
    D. Brydges and P. Federbush,Commun. Math. Phys. 73:197 (1980).Google Scholar
  14. 14.
    A. S. Usenko and I. P. Yakimenko,Sov. Tech. Phys. Lett. 5:549 (1979).Google Scholar
  15. 15.
    M. L. Mehta,Random Matrices (Academic Press, New York, 1967).Google Scholar
  16. 16.
    Ph. Choquard,Helv. Phys. Acta 54:332 (1981) (and private communication).Google Scholar
  17. 17.
    H. Kunz,Ann. Phys. (N.Y.) 85:303 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • P. J. Forrester
    • 1
  • B. Jancovici
    • 2
    • 3
  • E. R. Smith
    • 1
  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia
  2. 2.Laboratoire de Physique Théorique et Hautes EnergiesUniversité de Paris-SudOrsayFrance
  3. 3.Laboratoire Associé du Centre National de la Recherche ScientifiqueFrance

Personalised recommendations