Skip to main content
Log in

The Yang-Lee edge singularity in one-dimensional Ising andN-vector models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The distribution of zeros of the partition function in the complex magnetic field plane is studied for linear chains ofn-vector spins and finite-width strips of Ising spins with nearest-neighbor interactions. By means of transfer matrix/operator techniques, the exponent σ characterizing the behavior of the density of zeros near the Yang-Lee edge is shown to have the exact valuea =−1/2 (i) analytically forn-vector chains in the high-temperature limit and for Ising strips in the low-temperature limit, and (ii) numerically for intermediate temperatures. The crossover of σ from itsn-vector value to its spherical model value, σ = 1/2, asn → ∞, as well as fromd = 1 tod = 2 Ising as the width of the strips increases, seems to proceed by an accumulation of branch points in the spectrum of the transfer operator; for then-vector models the position of the gap edge and the free energy at the edge approach their spherical model values with corrections of order l/n ζ with ζ ≅ 3/4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle,Statistical Mechanics (Benjamin, New York, 1969), p. 134.

    Google Scholar 

  2. T. D. Lee and C. N. Yang,Phys. Rev. 87:410 (1952).

    Google Scholar 

  3. D. A. Kurtze and M. E. Fisher,J. Stat. Phys. 19:205 (1978).

    Google Scholar 

  4. P. J. Kortman and R. B. Griffiths,Phys. Rev. Lett. 27:1439 (1971).

    Google Scholar 

  5. M. E. Fisher,Prog. Theor. Phys. Supp. 69:14 (1980).

    Google Scholar 

  6. O. Penrose and J. L. Lebowitz,Commun. Math. Phys. 39:165 (1974).

    Google Scholar 

  7. O. Penrose and J. S. N. Elvey,J. Phys. A 1:661 (1968).

    Google Scholar 

  8. J. S. N. Elvey,Commun. Math. Phys. 35:101 (1974).

    Google Scholar 

  9. T. S. Nilsen and P. C. Hemmer,J. Chem. Phys. 46:2640 (1967).

    Google Scholar 

  10. S. Katsura and M. Ohminami,J. Phys. A 5:95 (1972); M. Ohminami, Y. Abe, and S. Katsura,Ibid. 5:1669 (1972); S. Katsura and M. Ohminami,Ibid. 6:329 (1973); Y. Abe and S. Katsura,J. Phys. Soc. Jpn. 40:642 (1976).

    Google Scholar 

  11. H. E. Stanley,Phys. Rev. 176:718 (1968).

    Google Scholar 

  12. M. Kac and C. J. Thompson,Phys. Norvegica 5:163 (1971).

    Google Scholar 

  13. P. A. Pearce and C. J. Thompson,J. Stat. Phys. 17:189 (1978).

    Google Scholar 

  14. M. E. Fisher,Phys. Rev. Lett. 40:1610 (1978).

    Google Scholar 

  15. D. A. Kurtze and M. E. Fisher,Phys. Rev. B 20:2785 (1979).

    Google Scholar 

  16. O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKane,J. Phys. A 13:L247 (1980);14:2391 (1981).

    Google Scholar 

  17. K. Uzelac and R. Jullien,J. Phys. A 14:L151 (1981).

    Google Scholar 

  18. K. Uzelac, P. Pfeuty, and R. Jullien,Phys. Rev. Lett. 43:85 (1979);Phys. Rev. B 22:436 (1980); R. Jullien, K. Uzelac, P. Pfeuty, and P. Moussa,J. Phys. (Paris) 42:1075 (1981).

    Google Scholar 

  19. M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic, New York, 1971), p. 1.

    Google Scholar 

  20. T. W. Capehart and M. E. Fisher,Phys. Rev. B 13:5021 (1976).

    Google Scholar 

  21. F. Dunlop and C. M. Newman,Commun. Math. Phys. 44:223 (1975).

    Google Scholar 

  22. H. E. Stanley,Phys. Rev. 179:570 (1969).

    Google Scholar 

  23. A. Erdélyiet al., Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2, p. 247.

    Google Scholar 

  24. Ref. 23, p. 232.

    Google Scholar 

  25. Ref. 23, p. 5.

    Google Scholar 

  26. A. Patkos and P. Rujan,Z. Phys. B 33:163 (1979).

    Google Scholar 

  27. Ref. 23.

    Google Scholar 

  28. See, e.g., M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).

    Google Scholar 

  29. D. A. Kurtze, Ph.D. thesis (Cornell University, Ithaca, 1979) Chap. 3, Sec. 3.

    Google Scholar 

  30. M. Tinkham,Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964), p. 80.

    Google Scholar 

  31. R. Bellman,Introduction to Matrix Analysis (McGraw-Hill, New York, 1960), p. 288.

    Google Scholar 

  32. R. Balian and G. Toulouse,Ann. Phys. (N.Y.) 83:28 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtze, D.A. The Yang-Lee edge singularity in one-dimensional Ising andN-vector models. J Stat Phys 30, 15–35 (1983). https://doi.org/10.1007/BF01010866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010866

Key words

Navigation