Skip to main content
Log in

Rate processes on fractals: Theory, simulations, and experiments

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Heterogeneous kinetics are shown to differ drastically from homogeneous kinetics. For the elementary reaction A + A → products we show that the diffusion-limited reaction rate is proportional tot h[A]2 or to [A]x, whereh=1- d s/2, X=1+2/d s =(h-2)(h-1), andd s is the effective spectral dimension. We note that ford = d s =1, h =1/2 andX = 3, for percolating clustersd s = 4/3,h = 1/3 andX = 5/2, while for “dust” ds <1, 1 >h > 1/2 and ∞ >X > 3. Scaling arguments, supercomputer simulations and experiments give a consistent picture. The interplay of energetic and geometric heterogeneity results in fractal-like kinetics and is relevant to excitation fusion experiments in porous membranes, films, and polymeric glasses. However, in isotopic mixed crystals, the geometric fractal nature (percolation clusters) dominates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Berry, S. A. Rice, and J. Ross,Physical Chemistry (Wiley, New York, 1980).

    Google Scholar 

  2. R. Kopelman, inTopics in Applied Physics, Vol. 15, F. K. Fong, ed. (Springer-Verlag, Berlin, 1976), p. 297.

    Google Scholar 

  3. M. V. Smoluchowski,Z. Phys. Chem. 92:129 (1917).

    Google Scholar 

  4. B. B. Mandelbrot,The Fractal Geometry oj Nature (Freeman, San Francisco, 1983).

    Google Scholar 

  5. P. G. de Gennes,C. R. Acad. Sci. Ser. A 296:881 (1983), and references therein.

    Google Scholar 

  6. C. D. Mitescu and J. Rousseng, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds.Ann. Israel Phys. Soc. 5:81 (1983), and references therein.

  7. S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943).

    Google Scholar 

  8. R. M. Noyes,Prog. Reac. Kinetics 1:128 (1961).

    Google Scholar 

  9. N. G. van Kampen,Int. J. Quant. Chem. 16:101 (1982).

    Google Scholar 

  10. D. F. Calef and J. M. Deutch,Ann. Rev. Phys. Chem. 34:493 (1983).

    Google Scholar 

  11. P. Argyrakis and R. Kopelman,Chem. Phys. Lett. 61:187 (1979).

    Google Scholar 

  12. P. Argyrakis and R. Kopelman,Phys. Rev. B 22:1830 (1980).

    Google Scholar 

  13. J. Klafter, A. Blumen, and G. Zumofen,J. Stat. Phys. 36:561 (1984).

    Google Scholar 

  14. P. W. Klymko and R. Kopelman,J. Phys. Chem. 87:4565 (1983).

    Google Scholar 

  15. K. Kang and S. Redner,Phys. Rev. Lett. 52:955 (1984).

    Google Scholar 

  16. E. W. Montroll and G. H. Weiss,J. Math. Phys. (N.Y.) 6:167 (1965).

    Google Scholar 

  17. S. Alexander and R. Orbach,J. Phys. (Paris) Lett. 44:L13 (1982).

    Google Scholar 

  18. H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975).

    Google Scholar 

  19. P. Argyrakis, L. W. Anacker, and R. Kopelman,J. Stat. Phys. 36:579 (1984); L. W. Anackeret al., J. Stat. Phys. 36:591 (1984).

    Google Scholar 

  20. L. W. Anacker and R. Kopelman,J. Chem. Phys. 31:6402 (1984).

    Google Scholar 

  21. L. Sander (private communication, 1985).

  22. F. Leyvraz and H. E. Stanley,Phys. Rev. Lett. 51:2048 (1983).

    Google Scholar 

  23. Y. Gefen, A. Aharony, and S. Alexander,Phys. Rev. Lett. 50:77 (1983).

    Google Scholar 

  24. J. S. Newhouse, P. Argyrakis, and R. Kopelman,Chem. Phys. Lett. 107:48 (1984).

    Google Scholar 

  25. J. S. Newhouse, Ph.D. thesis, The University of Michigan, Ann Arbor (1985).

    Google Scholar 

  26. L. W. Anacker, P. W. Klymko, and R. Kopelman,J. Lumin. 31/32:648 (1984).

    Google Scholar 

  27. P. W. Klymko, Ph.D. thesis, The University of Michigan, Ann Arbor (1984).

    Google Scholar 

  28. P. W. Klymko and R. Kopelman,J. Phys. Chem. 86:3686 (1982).

    Google Scholar 

  29. P. Pfeifer, D. Avnir, and D. Farin, inFractal Aspects of Materials: Metals and Catalyst Surfaces, Powders and Aggregates, B. B. Mandelbrot and D. E. Passoja, eds. (Materials Research Society, 1984), p. 4.

  30. U. Evenet al., Phys. Rev. Lett. 42:2164 (1984).

    Google Scholar 

  31. C. L. Yang, P. Evesque, and M. A. El-Sayed,J. Phys. Chem. 89:3442 (1985).

    Google Scholar 

  32. E. I. Newhouse and R. Kopelman,J. Lumin. 31/32:651 (1984).

    Google Scholar 

  33. M. F. Shlesinger,J. Stat. Phys. 36:639 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopelman, R. Rate processes on fractals: Theory, simulations, and experiments. J Stat Phys 42, 185–200 (1986). https://doi.org/10.1007/BF01010846

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010846

Key words

Navigation