Skip to main content
Log in

Activated barrier crossing: Comparison of experiment and theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Photochemical isomerization in stilbene and diphenyl butadiene has been studied as a model for activated barrier crossing. Experiments have been carried out from isolated molecule conditions up to 3000 atm pressure in solution-phase samples. The qualitative features predicted by Kramers theory are observed. The system undergoes a transition from energy-controlled to diffusion-controlled behavior in the high-pressure gas phase. The influences of multidimensionality, intramolecular vibrational relaxation, and frequency dependent friction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Velsko and G. R. Fleming,J. Chem. Phys. 76:3553 (1982).

    Google Scholar 

  2. S. P. Velsko, D. H. Waldeck, and G. R. Fleming,J. Chem. Phys. 78:249 (1983).

    Google Scholar 

  3. B. Carmeli and A. Nitzan,Phys. Rev. Lett. 51:233 (1983).

    Google Scholar 

  4. J. L. Skinner and P. G. Wolynes,J. Chem. Phys. 72:4913 (1983).

    Google Scholar 

  5. P. Hanggi and U. Weiss,Phys. Rev. A 29:2265 (1984).

    Google Scholar 

  6. B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 35:443 (1984).

    Google Scholar 

  7. J. T. Hynes, inThe Theory of Chemical Reaction Dynamics' M. Baer, ed. (Chemical Rubber, Boca Roton, Florida, 1985).

    Google Scholar 

  8. P. M. Felker and A. H. Zewail,Chem. Phys. Lett. 108:303 (1984).

    Google Scholar 

  9. J. A. Syage, P. M. Felker, and A. H. Zewaill,J. Chem. Phys. 81:4685 (1984)

    Google Scholar 

  10. J. A. Syage, P. M. Felker, and A. H. Zewail,J. Chem. Phys. 81:4706 (1984).

    Google Scholar 

  11. B. J. Berne,Chem. Phys. Lett. 107:131 (1984).

    Google Scholar 

  12. K. F. Freed and A. Nitzan, inEnergy Storage and Redistribution in Molecules, J. Hinze, ed. (Plenum, New York, 1983).

    Google Scholar 

  13. R. F. Grote and J. T. Hynes,J. Chem. Phys. 73:2715 (1980); R. F. Grote, G. van der Zwan, and J. T. Hynes,J. Phys. Chem. 88:4767 (1984).

    Google Scholar 

  14. P. Hänggi and F. Mojtabai,Phys. Rev. A 26:1168 (1982); P. Hänggi,J. Stat. Phys. 30:401 (1983).

    Google Scholar 

  15. B. Carmeli and A. Nitzan,J. Chem. Phys. 79:393 (1983).

    Google Scholar 

  16. S. H. Courtney and G. R. Fleming,Chem. Phys. Lett. 103:443 (1984).

    Google Scholar 

  17. S. H. Courtney and G. R. Fleming,J. Chem. Phys. 83:215 (1985).

    Google Scholar 

  18. P. M. Felker, W. R. Lambert, and A. H. Zewail,J. Chem. Phys. 82:3003 (1985).

    Google Scholar 

  19. R. F. Grote, G. Van der Zwan, and J. T. Hynes,J. Phys. Chem. 88:4676 (1984).

    Google Scholar 

  20. A. Nitzan,J. Chem. Phys. 82:1614 (1985).

    Google Scholar 

  21. M. Borkovec and B. J. Berne,J. Chem. Phys. 82:794 (1985).

    Google Scholar 

  22. R. F. Grote and J. T. Hynes,J. Chem. Phys. 74:4465 (1981);J. Chem. Phys. 75:2191 (1981); G. von der Zwan and J. T. Hynes,J. Chem. Phys. 77:1295 (1982); G. von der Zwan and J. T. Hynes,Chem. Phys. 90:21 (1984).

    Google Scholar 

  23. B. Carmeli and Nitzan,Chem. Phys. Lett. 106:329 (1984).

    Google Scholar 

  24. N. Agmon and J. J. Hopfield,J. Chem. Phys. 78:6947 (1983); N. Agmon,Chem. Phys. Lett. (in press).

    Google Scholar 

  25. G. Rothenberger, D. K. Negus, and P. M. Hochstrasser,J. Chem. Phys. 79:5360 (1983).

    Google Scholar 

  26. G. Maneke, J. Schroeder, J. Troe, and F. Voss,Ber. Bunsenges. Phys. Chem. 89:896 (1985).

    Google Scholar 

  27. K. M. Keery and G. R. Fleming,Chem. Phys. Lett. 93:322 (1982).

    Google Scholar 

  28. C. V. Shank, E. P. Ippen, O. Teschke, and K. B. Eisenthal,J. Chem. Phys. 67:5547 (1977).

    Google Scholar 

  29. D. Millar and K. B. Eisenthal,J. Chem. Phys. (submitted).

  30. J. A. Syage, W. R. Lambert, P. M. Felker, A. H. Zewail, and R. M. Hochstrasser,Chem. Phys. Lett. 88:266 (1982).

    Google Scholar 

  31. T. J. Majors, U. Even, and J. Jortner,J. Chem. Phys. 81:2330 (1984).

    Google Scholar 

  32. T. S. Zwier, E. Carrasquillo, and D. H. Levy,J. Chem. Phys. 78:5493 (1983).

    Google Scholar 

  33. J. F. Shepanski, B. W. Keelan, and A. H. Zewail,Chem. Phys. Lett. 103:9 (1983).

    Google Scholar 

  34. L. A. Heimbrook, B. E. Kohler, and T. A. Spiglanin,Proc. Nail. Acad. Sci. U.S.A. 80:4580 (1983).

    Google Scholar 

  35. S. H. Courtney, G. R. Fleming, L. R. Khundkar, and A. H. Zewail,J. Chem. Phys. 80:4559 (1984).

    Google Scholar 

  36. D. Hasha, T. Eguchi, and J. Jonas,J. Am. Chem. Soc. 104:2290 (1982).

    Google Scholar 

  37. J. Ashcraft, M. Besnard, V. Aquado, and J. Jonas,Chem. Phys. Lett. 110:420 (1984).

    Google Scholar 

  38. G. van der Zwan and J. T. Hynes,J. Chem. Phys. 76:2993 (1982)

    Google Scholar 

  39. G. van der Zwan and J. T. Hynes,J. Chem. Phys. 78:4174 (1983)

    Google Scholar 

  40. G. van der Zwan and J. T. Hynes,Chem. Phys. Lett. 101:367 (1983).

    Google Scholar 

  41. B. Bagchi and D. W. Oxtoby,J. Chem. Phys. 78:2735 (1983).

    Google Scholar 

  42. B. Carmeli and A. Nitzan,J. Chem. Phys. 80:3596 (1984).

    Google Scholar 

  43. V. Sundström and T. Gillbro,Chem. Phys. Lett. 109:538 (1984).

    Google Scholar 

  44. G. Orlandi and W. Siebrand,Chem. Phys. Lett. 30:352 (1975).

    Google Scholar 

  45. R. J. Robbins, G. R. Fleming, G. S. Beddard, G. W. Robinson, P. J. Thistlewaite, and G. J. Woolfe,J. Am. Chem. Soc. 102:6171 (1980); G. R. Fleming, W. T. Lotshaw, R. J. Gulotty, M. Chang, and J. W. Petrich, inPhotochemistry and Photobiology: Proceedings of the Intl. Conference, January 1983, University of Alexandria, Egypt, A. H. Zewail, ed. (Harwood, Chur, 1983).

    Google Scholar 

  46. M. C. Chang, S. H. Courtney, A. J. Cross, R. J. Gulotty, J. W. Petrich, and G. R. Fleming,Anal. Biochim., (in press).

  47. L. R. Khundkar, R. A. Marcus, and A. H. Zewail,J. Phys. Chem. 87:2473 (1983).

    Google Scholar 

  48. J. Troe,Chem. Phys. Lett. 114:241 (1985).

    Google Scholar 

  49. J. Troe, A. Amirav, and J. Jortner,Chem. Phys. Lett. 115, 245 (1985).

    Google Scholar 

  50. A. Warshel,J. Chem. Phys. 62:214 (1975)

    Google Scholar 

  51. B. M. Pierce and R. R. Birge,J. Chem. Phys. 86:2651 (1982).

    Google Scholar 

  52. P. J. Robinson and K. A. Holbrook,Unimolecular Reactions (Wiley, New York, 1972).

    Google Scholar 

  53. F. E. Doany, B. I. Greene, Y. Liang, D. K. Negus, and R. M. Hochstrasser, inPicosecond Phenomena H (Springer, New York, 1980).

    Google Scholar 

  54. D. H. Waldeck and G. R. Fleming,J. Phys. Chem. 85:2614 (1981).

    Google Scholar 

  55. S. Russo and P. J. Thistlewaite,Chem. Phys. Lett. 106:91 (1984).

    Google Scholar 

  56. C. J. Tredwell and A. D. Osborne,J. Chem. Soc. Faraday Trans. 2 76:1627 (1980).

    Google Scholar 

  57. B. Bagchi and D. W. Oxtoby,J. Chem. Phys. 78:2735 (1983).

    Google Scholar 

  58. G. W. Robinson, W. A. Jalenak, and D. Statman,Chem. Phys. Lett. 110:135 (1984)

    Google Scholar 

  59. D. Statman and G. W. Robinson,J. Chem. Phys. 83:655 (1985).

    Google Scholar 

  60. D. W. Oxtoby,J. Chem. Phys. 70:2605 (1979).

    Google Scholar 

  61. R. H. Dyck and D. S. McClure,J. Chem. Phys. 36:2326 (1962).

    Google Scholar 

  62. J. W. Perry, N. F. Scherer, and A. H. Zewail,Chem. Phys. Lett. 103:1 (1983).

    Google Scholar 

  63. H. J. M. Hanley, W. M. Haynes, and R. D. McCarty,J. Phys. Chem. Ref. Data 6:597 (1977).

    Google Scholar 

  64. R. D. McCarty,Cryogenics 14:276 (1974).

    Google Scholar 

  65. H. J. M. Hanley, K. E. Gubbins, and S. Murad,J. Phys. Chem. Ref. Data 6:1168 (1977).

    Google Scholar 

  66. M. Lee, G. R. Holtom, and R. M. Hochstrasser,Chem. Phys. Lett. 118:359 (1985).

    Google Scholar 

  67. B. I. Greene and T. W. Scott,Chem. Phys. Lett. 106:399 (1984).

    Google Scholar 

  68. M. Sumitani and K. Yoshihara,Bull. Chem. Soc. Jpn. 55:85 (1982).

    Google Scholar 

  69. V. Sundström and T. Gillbro,Ber. Bunsenges, Phys. Chem. 89:222 (1985).

    Google Scholar 

  70. A. A. Villaeys, A. Boeglin, and S. H. Lin,Chem. Phys. Lett. 116:210 (1985)

    Google Scholar 

  71. A. A. Villaeys, A. Boeglin, and S. H. Lin,J. Chem. Phys. 82:4044 (1985).

    Google Scholar 

  72. H. A. Kramers,Physica 7:284 (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Camille and Henry Dreyfus Teacher Scholar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, G.R., Courtney, S.H. & Balk, M.W. Activated barrier crossing: Comparison of experiment and theory. J Stat Phys 42, 83–104 (1986). https://doi.org/10.1007/BF01010842

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010842

Key words

Navigation