Mode propagation constants in hollow oversized circular waveguides with low-conductivity wall material

  • J. P. Crenn
  • P. Belland


Using convenient parameters, the mode propagation constants in hollow circular waveguides with low-conductivity wall material are derived into practical formulas. The variations of these propagation constants versus electrical characteristics of the wall material are studied. The results allow the determination of optimal materials for low-loss mode transmission and the improvements achieved with these optimal materials compared to the usual dielectrical materials are pointed out. Application to the particular case of ordinary glass as a guide wall material is made. The condition to have the fundamental EH11 mode the less attanuated is given.

Key Words

oversized waveguides mode attenuation optimal wall material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    E.A.J. Marcatili and R.A. Schmeltzer, Bell Syst. Tech.J.43, 1783 (1964).Google Scholar
  2. /2/.
    J.P. Crenn, IEEE Trans. Microwave Theory Tech.MTT-27, 537 (1979).Google Scholar
  3. /3/.
    F.K. Kneubühl and E. Affolter, “Infrared and Submillimeter-Wave Waveguides”, in Infrared and Millimeter Waves, Vol. 1, chap. 6, Academic Press, New-York, 1979.Google Scholar
  4. /4/.
    J.P. Crenn and D. Véron, International Conference on Infrared and Millimeter Waves, Miami, Flo, K.J. Button ed. (1981), W-4-10.Google Scholar
  5. /5/.
    C.H. Ma, D.P. Hutchinson, P.A. Staats and K.L. Vander Sluis, Int. J. Infrared Millimeter Waves,3, 263 (1982).Google Scholar
  6. /6/.
    J.P. Crenn, Appl. Opt.21, 4533 (1982); Erratum,22, 1426 (1983).Google Scholar
  7. /7/.
    P.W. Smith, Appl. Phys. Lett.19, 132 (1971).Google Scholar
  8. /8/.
    J.J. Degnan, Appl. Phys.11, 1 (1976).Google Scholar
  9. /9/.
    M. Yamanaka, J. Opt. Soc. Amer.67, 952 (1977).Google Scholar
  10. /10/.
    F.K. Kneubühl, J. Opt. Soc. Amer.67, 959 (1977).Google Scholar
  11. /11/.
    E. Snitzer, J. Opt. Soc. Amer.51, 491 (1961).Google Scholar
  12. /12/.
    J.P. Crenn, Appl. Opt.23, 3428 (1984).Google Scholar
  13. /13/.
    J.P. Crenn, “Etude théorique et expérimentale de la propagation des faisceaux Gaussiens et des modes dans les guides circlaires surdimensionnés”, Thèse de Doctorat d'Etat, Univ. of Paris VI, and Rep. EUR-CEA-1229, June 1984.Google Scholar
  14. /14/.
    J.P. Crenn, Appl. Opt.24, 3648 (1985).Google Scholar
  15. /15/.
    J.R. Birch, R.J. Cook, A.F. Harding, R.G. Jones and G.D. Price, J. Phys.D 8, 1353 (1975).Google Scholar
  16. /16/.
    G.J. Simonis, Int. J. Infrared Millimeter Waves,3, 439 (1982).Google Scholar
  17. /17/.
    P. Belland, D. Véron and L.B. Whitbourn, Appl. Opt.15, 3047 (1976).Google Scholar
  18. /18/.
    P. Belland and D. Véron, IEEE J. Quantum Electron.QE-16, 885 (1980).Google Scholar
  19. /19/.
    P. Belland, Appl. Phys.B 27, 123 (1982).Google Scholar
  20. /20/.
    P. Belland and J.P. Crenn, Appl. Opt.18, 1513 (1979).Google Scholar
  21. /21/.
    P. Belland and J.P. Crenn, Opt. Commun.45, 165 (1983).Google Scholar
  22. /22/.
    Handbook of Mathematical Functions, NBS Applied Mathematics Series 55, Ed. M. Abramowitz and I.A. Stegun, 1968.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. P. Crenn
    • 1
  • P. Belland
    • 2
  1. 1.Association EUR-CEA sur la Fusion ContrôléeFontenay-aux-RosesFrance
  2. 2.Laboratoire de Dispositifs InfrarougeUniversité Paris VIparis Cedex 05France

Personalised recommendations