Grating polarizers in waveguide miter bends

  • John L. Doane


Rectangular grooved gratings have been fabricated on mirrors of waveguide miter bends. When the HE11 mode was propagated in corrugated waveguide with diameter equal to approximately 12 wavelengths, these gratings performed in the same manner as predicted using plane wave theory. Two gratings with different groove depths in successive miter bends are sufficient to generate a rather wide range of polarizations. These gratings are particularly convenient in waveguide, which offers ease of alignment, compact transverse dimensions, and the possibility of vacuum operation.


Plane Wave Wave Theory Transverse Dimension Groove Depth Corrugate Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.P. Moeller, V.S. Chan, R.J. LaHaye, R. Prater, T. Yamamoto, A. Funahashi, K. Hoshino, and T. Yamouchi, Phys. Fluids25, 1211–1216 (1982).Google Scholar
  2. [2]
    R. Prater, J. Fusion Energy9, 19 (1990).Google Scholar
  3. [3]
    C. Moeller, R. Prater, D. Remsen, J. Doane, W. Cary, R. Phelps, and M. Tupper, inProc. 16th Symp. on Fusion Technology (SOFT), (London, England, 1990), pp. 1040–1044.Google Scholar
  4. [4]
    W. Kasparek, H. Kumri'c, G.A. Műller, P.G. Schűller, V. Erckmann, and M. Thumm, inProc. First Intl. Workshop on Electron Cyclotron Resonance Heating Transmission Systems (Cocoa Beach, Florida, 1990).Google Scholar
  5. [5]
    P.P. Woskov, J.S. Machuzak, R.C. Myer, D.R. Cohn, N.L. Bretz, P.C. Efthimion, and J.L. Doane, Rev. Sci. Instrum.59, 1565–1567 (1988).Google Scholar
  6. [6]
    M.A. Heald and C.B. Wharton,Plasma Diagnostics with Microwaves, (Krieger Publishing Co., New York, 1978), p. 25.Google Scholar
  7. [7]
    M.I. Petelin, quoted in Ref. inProc. First Intl. Workshop on Electron Cyclotron Resonance Heating Transmission Systems (Cocoa Beach, Florida, 1990), above.Google Scholar
  8. [8]
    Y.-L. Kok and N.C. Gallagher, J. Opt. Soc. Am. A5, 65–73 (1988).Google Scholar
  9. [9]
    Felix M.A. Smits, inProc. 7th Joint Workshop on ECE and ECRH (Hefei, China, 1989).Google Scholar
  10. [10]
    T.S. Bigelow, J.B. Wilgen, L.R. Baylor, M. Murakami, C.R. Schaich, and R. Lindley, AIP Conf. Proc.No. 244, 15–19 (1992).Google Scholar
  11. [11]
    R.J. Wylde, IEE Conf. Proc. Part H,131, 258–262 (1984).Google Scholar
  12. [12]
    J.B. Davies and B.J. Goldsmith, Philips Res. Rep.23, 207–232 (1968).Google Scholar
  13. [13]
    P.J.B. Clarricoats and A.D. Olver,Corrugated Horns for Microwave Antennas (Peter Peregrinus Ltd., London, 1984) Appendix.Google Scholar
  14. [14]
    J.D. Hanfling, G. Jerinic, and L.R. Lewis, IEEE Trans. Antennas Propag.AP-29, 622–629 (1981).Google Scholar
  15. [15]
    E.A.J. Marcatili and R.A. Schmeltzer, Bell Syst. Tech. J.43, 1783–1809 (1964).Google Scholar
  16. [16]
    K.H. Breeden and A.P. Sheppard, Radio Sci.3, 205 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • John L. Doane
    • 1
  1. 1.General AtomicsSan Diego

Personalised recommendations