Journal of Statistical Physics

, Volume 43, Issue 1–2, pp 281–302 | Cite as

Resummation methods of the Chapman-Enskog expansion for a strongly inhomogeneous plasma

  • J. F. Luciani
  • P. Mora
Articles

Abstract

We present a two-fold approach for strongly inhomogeneous plasmas for which the Chapman-Enskog asymptotic expansion breaks down: First, a heuristic one: we solve the kinetic equation by an iterative algorithm, and obtain a non-local response to the local gradients of the local maxwellian distribution function. The other approach consists in resummation methods of the Chapman-Enskog expansion for the distribution function or for its velocity moments: we use Padé or Borel-Padé approximants, and obtain with the simplest ones delocalization formulas similar to those obtained by using the iterative algorithm. These formulas are of great potential use in any situation where strong temperature gradients occur (laser plasma interaction, stellar winds, cloud evaporation).

Key words

Transport theory Chapman-Enskog expansion Padé approximants Borel-Padé approximant resummation methods non-equilibrium plasma strong temperature gradients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Grad,Phys. Fluids 6:147 (1963); U. Weinert,Phys. Rep. 91:297 (1982).Google Scholar
  2. 2.
    F. Amiranoff et al.,Phys. Rev. Lett. 43:522 (1979); B. Yaakobi et al.,Phys. Fluids 27:516 (1983); W. C. Mead et al.,Phys. Rev. Lett. 47:1289 (1981); R. Fabbro et al.,Phys. Rev. A26:2289 (1981).Google Scholar
  3. 3.
    H. Dorland, T. Montmerle, and C. Doom (submitted to Astronomy and Astrophys); R. Weaver et al.,Astrophys. J. 218:377 (1977); E. Shoub,Astrophys. J. 266:339 (1983).Google Scholar
  4. 4.
    L. D. Cowie, C. F. McKee,Astrophys. J. 211:135 (1977).Google Scholar
  5. 5.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1970).Google Scholar
  6. 6.
    L. Spitzer and R. Härm,Phys. Rev. 89:977 (1953).Google Scholar
  7. 7.
    S. I. Braginskii, inReviews of Plasma Physics (Consultant Bureau, New York, 1965).Google Scholar
  8. 8.
    D. R. Gray and J. D. Kilkenny,Plasma Phys. 22, 81 (1980).Google Scholar
  9. 9.
    H. Grad,Comm. Pure Appl. Math. 2:325 (1949).Google Scholar
  10. 10.
    J. Duderstadt and G. Moses,Phys. Fluids 20:762 (1977).Google Scholar
  11. 11.
    J. F. Luciani, P. Mora, and R. Pellat,Phys. Fluids 28:835 (1985).Google Scholar
  12. 12.
    Y. Kishimoto and K. Mima,J. Phys. Soc. Jap. 52:3389 (1983).Google Scholar
  13. 13.
    A. B. Langdon,Phys. Rev. Lett. 44:575 (1980); J. F. Luciani and P. Mora, Rapport CPT École Polytechnique 671.0685 (1985), to be published.Google Scholar
  14. 14.
    A. R. Bell, R. G. Evans, D. J. Nicholas,Phys. Rev. Lett. 46:2436 (1981); J. P. Matte and J. Virmont,Phys. Rev. Lett. 49:1936 (1982); J. R. Albritton,Phys. Rev. Lett. 50:2078 (1983); J. P. Matte et al.,Phys. Rev. Lett. 53:1461 (1984).Google Scholar
  15. 15.
    J. F. Luciani, P. Mora, and J. Virmont,Phys. Rev. Lett. 15:1664 (1983).Google Scholar
  16. 16.
    J. F. Luciani, Thèse d'État, Université Paris VI (1985).Google Scholar
  17. 17.
    G. A. Baker and P. Graves-Morris,Padé Approximats (Addison-Wesley, Reading, Mass., 1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. F. Luciani
  • P. Mora
    • 1
  1. 1.Centre de Physique ThéoriqueÉcole PolytechniqueFrance

Personalised recommendations