Journal of Statistical Physics

, Volume 43, Issue 1–2, pp 267–279 | Cite as

Transmission and reflection of waves in a one-dimensional disordered array

  • B. U. Felderhof


We study wave propagation in a one-dimensional disordered array of scattering potentials. We calculate the mean and the variance of the resistance of the array, defined as the ratio of reflected to transmitted intensity, for a rather wide class of probability distributions characterizing the disorder. Our method is based on a mapping of the wave propagation onto the motion of a two-dimensional oscillator which is perturbed parametrically.

Key words

Waves in disordered array one dimension conductivity parametrically perturbed oscillator exponential growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ishii,Suppl. Prog. Theor. Phys. 53:77 (1983).Google Scholar
  2. 2.
    P. Erdös and R. C. Herndon,Adv. Phys. 31:65 (1982).Google Scholar
  3. 3.
    R. Landauer,Phil. Mag. 21:863 (1970).Google Scholar
  4. 4.
    J. Sak and B. Kramer,Phys. Rev. B24:1761 (1981).Google Scholar
  5. 5.
    P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,Phys. Rev. B22:3519 (1980).Google Scholar
  6. 6.
    N. G. van Kampen,Phys. Rep. 24:171 (1976).Google Scholar
  7. 7.
    K. Lindenberg, V. Seshadri, K. E. Shuler, and B. J. West,J. Stat. Phys. 23:755 (1980).Google Scholar
  8. 8.
    B. J. West, K. Lindenberg, and V. Seshadri,Physica 102A:470 (1980).Google Scholar
  9. 9.
    N. G. van Kampen,Physica 102A:489 (1980).Google Scholar
  10. 10.
    N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).Google Scholar
  11. 11.
    E. Abrahams and M. J. Stephen,J. Phys. C. 13:L377 (1980).Google Scholar
  12. 12.
    B. S. Andereck and E. Abrahams,J. Phys. C 13:L383 (1980).Google Scholar
  13. 13.
    P. Erdös and S. B. Haley,Phys. Rev. B27:3871 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • B. U. Felderhof
    • 1
  1. 1.Institut Laue-LangevinGrenoble CedexFrance

Personalised recommendations