Global properties of cellular automata


Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperiodic temporal sequences is defined, as is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of “nearest-neighbor” rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. Anderson,IEEE Trans. SMC 13:799 (1983).

    Google Scholar 

  2. 2.

    D. Farmer, T. Toffoli, and S. Wolfram, eds., “Cellular Automata: Proceedings of an Interdisciplinary Workshop,”Physica 10D (1–2) (1984).

  3. 3.

    U. Frisch, B. Hasslacher, and Y. Pomeau, “A Lattice Gas Automaton for the Navier-Stokes Equation” (preprint).

  4. 4.

    G. Hedlund,Math. Systems Theory 3:320 (1969).

    Google Scholar 

  5. 5.

    E. Jen,J. Stat. Phys. 43:243 (1986).

    Google Scholar 

  6. 6.

    D. A. Lind, Reference (3).

  7. 7.

    O. Martin, A. Odlyzko, and S. Wolfram,Comm. Math. Phys. 93:219 (1984).

    Google Scholar 

  8. 8.

    J. Milnor, “Entropy of Cellular Automaton-Maps,” Institute for Advanced Study preprint (May 1984).

  9. 9.

    J. Milnor, “Notes on Surjective Cellular Automaton-Maps,” Institute for Advanced Study preprint (June 1984).

  10. 10.

    N. Packard, “Deterministic Lattice Models for Solidification and Aggregation” (preprint).

  11. 11.

    N. Packard, “Complexity of Growing Patterns in Cellular Automata” (preprint).

  12. 12.

    T. Toffoli, Reference (3).

  13. 13.

    J. von Neumann,Theory of Self-Reproducing Automata, A. W. Burks, ed. (Univ. Illinois Press, Urbana, 1966).

    Google Scholar 

  14. 14.

    M. S. Waterman, Reference (3).

  15. 15.

    S. Wolfram,Rev. Mod. Phys. 55:601 (1983).

    Google Scholar 

  16. 16.

    S. Wolfram,Physica 10D:1 (1984).

    Google Scholar 

  17. 17.

    S. Wolfram,Los Alamos Science (Fall 1983).

  18. 18.

    S. Wolfram,Comm. Math. Phys. 96:15 (1984).

    Google Scholar 

  19. 19.

    S. Wolfram,Phys. Rev. Lett. 55:449 (1985).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jen, E. Global properties of cellular automata. J Stat Phys 43, 219–242 (1986).

Download citation

Key words

  • Cellular automata
  • discrete dynamical systems
  • local interactions
  • deterministic structures