Journal of Statistical Physics

, Volume 38, Issue 3–4, pp 681–705 | Cite as

Random dimer filling of lattices: Three-dimensional application to free radical recombination kinetics

  • J. W. Evans
  • R. S. Nord


The recombination of nearest neighbors in a condensed matrix of free radicals was modeled by Jackson and Montroll as irreversible, sequential, random dimer filling of nearest-neighbor sites on an infinite, three-dimensional lattice. Here we analyze the master equations for random dimer filling recast as an infinite hierarchy of rate equations for subconfiguration probabilities using techniques involving truncation, formal density expansions (coupled with resummation), and spectral theory. A detailed analysis for the cubic lattice case produces, e.g., estimates for the fraction of isolated empty sites (i.e., free radicals) at saturation. We also consider the effect of a stochastically specified distribution of nonadsorptive sites (i.e., inert dilutents).

Key words

Dimer filling lattice irreversible saturation hierarchy equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Bass and H. P. Broida,Phys. Rev. 101:1740 (1956).Google Scholar
  2. 2.
    J. L. Jackson and E. W. Montroll,J. Chem. Phys. 28:1101 (1958); P. L. Chessin,J. Chem. Phys. 31:159 (1959); S. Golden,J. Chem. Phys. 29:61 (1958).Google Scholar
  3. 3.
    P. J. Flory,J. Am. Chem. Soc. 61:1518 (1939).Google Scholar
  4. 4.
    E. R. Cohen and H. Reiss,J. Chem. Phys. 38:680 (1963).Google Scholar
  5. 5.
    T. H. K. Barron and E. A. Boucher,Trans. Faraday Soc. 65:3301 (1969).Google Scholar
  6. 6.
    R. B. McQuistan and D. Lichtman,J. Math. Phys. 9:1680 (1968); T. H. K. Barron, R. J. Bawden, and E. A. Boucher,J. Chem. Soc. 70:651 (1974).Google Scholar
  7. 7.
    E. A. Boucher,Prog. Polym. Sci. 6:63 (1978).Google Scholar
  8. 8.
    P. D. Dawson and Y. K. Peng,Surf. Sci. 33:565 (1972); W. D. Dong,Surf. Sci. 42:609 (1974); D. R. Rossington and R. Borst,Surf. Sci. 3:202 (1965); J. B. Peri,J. Chem. Phys. 69:220 (1965).Google Scholar
  9. 9.
    R. B. McQuistan, D. Lichtman, and L. P. Levine,Surf. Sci. 20:401 (1970).Google Scholar
  10. 10.
    K. J. Vette, T. W. Orent, D. K. Hoffman, and R. S. Hansen,J. Chem. Phys. 60:4854 (1974).Google Scholar
  11. 11.
    D. K. Hoffman,J. Chem. Phys. 65:95 (1976); D. Knodel and D. K. Hoffman,J. Chem. Phys. 69:3438 (1978).Google Scholar
  12. 12.
    J. W. Evans,Physica A 123:297 (1984).Google Scholar
  13. 13.
    R. S. Nord and J. W. Evans,J. Chem. Phys. 82, in press (1985).Google Scholar
  14. 14.
    A. Silberberg and R. Simha,Biopolymers 6:479 (1968);Macromol. 5:332 (1972); R. H. Lacombe and R. Simha,J. Chem. Phys. 61:1899 (1974); A. Surda and I. Karasova,Surf. Sci. 109:605 (1981); J. Luque and A. Cordoba,J. Chem. Phys. 76:6393 (1982).Google Scholar
  15. 15.
    J. W. Evans, D. R. Burgess, and D. K. Hoffman,J. Chem. Phys. 79:5011 (1983).Google Scholar
  16. 16.
    J. W. Evans,J. Math. Phys. 25:2527 (1984).Google Scholar
  17. 17.
    J. J. Gonzalez and P. C. Hemmer,Polymer Lett. Ed. 14:645 (1976);J. Chem. Phys. 67:2496, 2509 (1977).Google Scholar
  18. 18.
    E. Merz, T. Alfrey, and G. Goldfinger,J. Polym. Sci. 1:75 (1946); H. J. Harwood, inReactions on Polymers, J. A. Moore, ed. Nato Adv. Study Inst. Series (D. Reidel, Dordrecht, 1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • J. W. Evans
    • 1
  • R. S. Nord
    • 1
  1. 1.Ames Laboratory and Department of ChemistryIowa State UniversityAmes

Personalised recommendations