Journal of Statistical Physics

, Volume 38, Issue 3–4, pp 669–680 | Cite as

Augmented Langevin approach to fluctuations in nonlinear irreversible processes

  • John D. Ramshaw


A Fokker-Planck equation derived from statistical mechanics by M. S. Green [J. Chem. Phys.20:1281 (1952)] has been used by Grabertet al. [Phys. Rev. A21:2136 (1980)] to study fluctuations in nonlinear irreversible processes. These authors remarked that a phenomenological Langevin approach would not have given the correct reversible part of the Fokker-Planck drift flux, from which they concluded that the Langevin approach is untrustworthy for systems with partly reversible fluxes. Here it is shown that a simple modification of the Langevin approach leads to precisely the same covariant Fokker-Planck equation as that of Grabertet al., including the reversible drift terms. The modification consists of augmenting the usual nonlinear Langevin equation by adding to the deterministic flow a correction term which vanishes in the limit of zero fluctuations, and which is self-consistently determined from the assumed form of the equilibrium distribution by imposing the usual potential conditions. This development provides a simple phenomenological route to the Fokker-Planck equation of Green, which has previously appeared to require a more microscopic treatment. It also extends the applicability of the Langevin approach to fluctuations in a wider class of nonlinear systems.

Key words

Langevin equation Fokker-Planck equation fluctuation-dissipation theorem fluctuations noise irreversible processes nonlinear dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  2. 2.
    D. D. Fitts,Nonequilibrium Thermodynamics (McGraw-Hill, New York, 1962).Google Scholar
  3. 3.
    H. Grabert, R. Graham, and M. S. Green,Phys. Rev. A 21:2136 (1980).Google Scholar
  4. 4.
    H. Grabert,J. Stat. Phys. 26:113 (1981).Google Scholar
  5. 5.
    M. S. Green,J. Chem. Phys. 20:1281 (1952).Google Scholar
  6. 6.
    R. Zwanzig,Phys. Rev. 124:983 (1961).Google Scholar
  7. 7.
    R. Zwanzig, inSystems Far from Equilibrium, L. Garrido, ed. (Lecture Notes in Physics, No. 132, Springer, New York, 1980), p. 198.Google Scholar
  8. 8.
    R. L. Stratonovich,Topics in the Theory of Random Noise, Vol. I (Gordon & Breach, New York, 1963).Google Scholar
  9. 9.
    R. Graham, inSpringer Tracts in Modern Physics, Vol. 66, G. Höhler, ed. (Springer-Verlag, Berlin, 1973).Google Scholar
  10. 10.
    N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).Google Scholar
  11. 11.
    R. Graham and H. Haken,Z. Phys. 243:289 (1971).Google Scholar
  12. 12.
    H. Mori and H. Fujisaka,Prog. Theor. Phys. 49:764 (1973).Google Scholar
  13. 13.
    K. S. J. Nordholm and R. Zwanzig,J. Stat. Phys. 11:143 (1974).Google Scholar
  14. 14.
    L. S. García-Colín and R. M. Velasco,Phys. Rev. A 12:646 (1975).Google Scholar
  15. 15.
    H. Grabert and W. Wiedlich,Phys. Rev. A 21:2147 (1980).Google Scholar
  16. 16.
    J. L. Del Rio,J. Stat. Phys. 34:329 (1984).Google Scholar
  17. 17.
    R. F. Rodriguez and L. de la Peña-Auerbach,Physica 123A:609 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • John D. Ramshaw
    • 1
  1. 1.Theoretical DivisionUniversity of California, Los Alamos National LaboratoryLos Alamos

Personalised recommendations