A contribution to the design of wideband tunable second harmonic mode millimeter-wave InP-TED oscillators above 110 GHz

  • Anders Rydberg


Second harmonic InP-TED oscillators are investigated for frequencies above 110 GHz using different mounts and TED's. It is found that state of the art output powers, comparable to Schottky-varactor multipliers, of more than 2 mW can be generated above 190 GHz by reducing the capsule parasitics. Output power up to 216 GHz are observed. The tuning range above 110 GHz is found to be more than 40%. Using theoretical waveguide models the tuning behaviour of the oscillators is also investigated.

Key words

InP-TED millimeter-wave second-harmonic theory experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. 1.
    J.E. Carlstrom, R.L. Plambeck and D.D. Thornton, “A continuously tunable 65–115 GHz Gunn oscillator,” IEEE Trans. Microwave Theory Techn., MTT-33, pp. 610–619, 1985.Google Scholar
  2. 2.
    A. Rydberg, “Solid state local oscillators for millimeter-wave low noise mixers”, Thesis for Doctor of Philosophy degree, Chalmers University of Technology, Technical report no. 187, 1988.Google Scholar
  3. 3.
    I.G. Eddison and D.M. Brookbanks, “Operating modes of millimetre wave transferred electron oscillators,” Electronics Lett., vol. 17, pp. 112–113, 1981.Google Scholar
  4. 4.
    A. Rydberg and E. Kollberg, “Wideband tunable 140 GHz second-harmonic InP-TED oscillator,” Electronics Lett., vol. 22, pp. 770–771, 1986.Google Scholar
  5. 5.
    W.J. Getsinger, “The packaged and mounted diode as a microwave circuit,” IEEE Trans. Microwave Theory Techn., MTT-14, pp. 58–59, 1966.Google Scholar
  6. 6.
    Hughes Co., USA. (Personal communication).Google Scholar
  7. 7.
    B. Fank, J. Crowley and C. Hang, “InP Gunn sources,” SPIE Vol 544 Millimeter Wave Technology III, pp. 22–28, 1985.Google Scholar
  8. 8.
    N.B. Kramer, “Sources of millimeter-wave radiation: Traveling-Wave Tube and Solid State Sources,” Infrared and Millimeter Waves, vol. 4, Academic Press 1981, pp. 184.Google Scholar
  9. 9.
    M.-R. Friscourt, P.-A. Rolland, A. Cappy, E. Constant and G. Salmer, “Theoretical contribution to the design of millimeter-wave TEO's,” IEEE Trans. Electron Devices, vol. ED-30, pp. 223–229, 1983.Google Scholar
  10. 10.
    M.-R. Friscourt, “Etude des dispositifs a transfert electronique pour la generation de puissance en gamme millimetrique,” Thesis, Lille France, May 1985.Google Scholar
  11. 11.
    M. A. di Forte-Poisson, C. Brylinski, G. Colomer, D. Osselin, S. Hersee, J.P. Duchemin, F. Azan, D. Lechevallier and J. Lacombe, “High-power high-efficiency LP-MOCVD InP Gunn diodes for 94 GHz,” Electronics Lett., vol. 20, pp. 1061–1062, 1984.Google Scholar
  12. 12.
    N. Haese and P.A. Rolland, “Waveguide radial-resonator circuit analysis for the design of millimeter wave power sources,” Proc. 19'th European Microwave Conf., London, pp. 645–650, 1989.Google Scholar
  13. 13.
    A. Rydberg, “Theoretical and experimental investigation of millimeterwave TED's in cross-waveguide oscillators,” Int. J. of Infrared and Millimeter Waves, vol. 6, pp. 635–647, 1985.Google Scholar
  14. 14.
    A.G. Williamson, “Radial-line/coaxial-line junctions: analysis and equivalent circuits,” Int. J. Electronics., vol. 58, pp. 91–104, 1985.Google Scholar
  15. 15.
    W.-C. Tsai, F.J. Rosenbaum and L.A. MacKenzie, “Circuit analysis of waveguide-cavity Gunn-effect oscillators,” IEEE Trans. Microwave Theory Techn., MTT-18, pp. 808–817, 1970.Google Scholar
  16. 16.
    M. Bischoff, “Ein einfaches Gunnelement-Ersatzschaltbild und seine Anwendung auf stabilisierte Oszillatoren im Millimeterwellenbereich,” Wiss. AEG-Telefunken, vol. 52, pp. 271–278, 1979.Google Scholar
  17. 17.
    J. Xu and S. Li, “A feedback model of millimeter wave harmonic oscillators and its application,” Int. J. of Infrared and Millimeter Waves, vol. 10, pp. 1093–1101, 1989.Google Scholar
  18. 18.
    M. Sironen, T. Tolmunen and A. Räisänen, “Comparison of higher-order multipliers to cascaded doublers and triplers in submillimeter signal generation,” Proc. 19'th European Microwave Conf., London, pp. 464–469, 1989.Google Scholar
  19. 19.
    W.-C. Tsai and F.J. Rosenbaum, “Bias circuit oscillations in Gunn devices,” IEEE Trans. Electron Dev., ED-16, pp. 196–202, 1969.Google Scholar
  20. 20.
    C. Chao, R.L. Bernick, E.M. Nakaji, R.S. Ying, K.P. Weller and D.H. Lee, “Y-band (170–260 GHz) tunable CW IMPATT diode oscillators,” IEEE Trans. Microwave Theory Tech., MTT-25, pp. 985–991, 1977.Google Scholar
  21. 21.
    S. Padin, “Scheme for phase-locking a local oscillator in submillimetre-wave receivers,” Electronics. Lett. vol. 25, pp. 874–875, 1989.Google Scholar
  22. 22.
    Dr. F. Azan, Thomson Composants Microondes, Orsay, France. (Personal communication).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Anders Rydberg
    • 1
  1. 1.Department of Radio and Space Science and Onsala Space ObservatoryChalmers University of TechnologyGöteborgSweden

Personalised recommendations