Journal of Statistical Physics

, Volume 46, Issue 1–2, pp 349–389 | Cite as

The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation



The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transform\(\widetilde{C}(z)\)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,\(\widetilde{C}(z)\) may be expressed by a Laurent series expansion in positive and negative powers ofz, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions of\(\widetilde{C}(z)\) as obtained from the application of conventional many-body techniques to the calculation of\(\widetilde{C}(z)\). The expressions are formulated as time scale expansions, which should rapidly converge if macroscopic and microscopic time scales are sufficiently well separated, i.e., if lifetime (“memory”) effects are not too large.

Key words

Statistical mechanics Liouville equation irreversible processes correlation functions Green-Kubo relations transport coefficients non-Markovian processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nakajima,Progr. Theor. Phys. (Kyoto) 20:948 (1958).Google Scholar
  2. 2.
    R. Zwanzig,J. Chem. Phys. 33:1338 (1960);Physica 30:1109 (1964).Google Scholar
  3. 3.
    F. Haake,Springer Tracts in Modern Physics, No. 66 (1973), p. 98.Google Scholar
  4. 4.
    H. Mori,Progr. Theor. Phys. (Kyoto) 33:423 (1965).Google Scholar
  5. 5.
    B. Robertson,Phys. Rev. 144:151 (1966);153:391 (1967); inThe Maximum Entropy Formalism, R. D. Levine and M. Tribus, eds. (MIT Press, Cambridge, Massachusetts, 1979).Google Scholar
  6. 6.
    H. Grabert,Springer Tracts in Modern Physics, Vol. 95 (1982).Google Scholar
  7. 7.
    E. Fick and G. Sauermann,Quantenstatistik dynamischer Prozesse (Geest & Portig, Leipzig, 1983).Google Scholar
  8. 8.
    C. Truesdell,Rational Thermodynamics (McGraw-Hill, New York, 1969).Google Scholar
  9. 9.
    A. Fulinksi and W. J. Kramarczyk,Physica 39:575 (1968); A. Fulinski,Phys. Lett. 35A:13 (1967);Physica 92A:198 (1978).Google Scholar
  10. 10.
    A. R. Altenberger and J. Stecki,J. Stat. Phys. 5:83 (1972).Google Scholar
  11. 11.
    T. Shimizu,J. Phys. Soc. Jpn. 28:1088 (1970).Google Scholar
  12. 12.
    M. Tokuyama and H. Mori,Progr. Theor. Phys. 55:411 (1976);56:1073 (1976);58:92 (1977).Google Scholar
  13. 13.
    M. Tokuyama,Physica 102A:399 (1980);109A:128 (1981);113A:350 (1981).Google Scholar
  14. 14.
    N. Hashitsume, F. Shibata, and M. Shingu,J. Stat. Phys. 17:155 (1977).Google Scholar
  15. 15.
    F. Shibata, Y. Takahashi, and N. Hashitsume,J. Stat. Phys. 17:171 (1977).Google Scholar
  16. 16.
    F. Shibata and N. Hashitsume,J. Phys. Soc. Jpn. 44:1435 (1978);Z. Phys. B 34:197 (1979).Google Scholar
  17. 17.
    H. Furukawa,Progr. Theor. Phys. Jpn. 62:70 (1979).Google Scholar
  18. 18.
    F. Shibata and T. Arimitsu,J. Phys. Soc. Jpn. 49:891 (1980).Google Scholar
  19. 19.
    M. Frankowicz,Z. Phys. B 43:251 (1981).Google Scholar
  20. 20.
    Y. Hamano and F. Shibata,J. Phys. Soc. Jpn. 51:1727,2085 (1982).Google Scholar
  21. 21.
    R. Der,Phys. Lett. 92A:68 (1982).Google Scholar
  22. 22.
    M. Saeki,J. Phys. Soc. Jpn. 52:4081, 4091 (1983).Google Scholar
  23. 23.
    S. Mukamel,Phys. Rev. Lett. 42:168 (1979);J. Chem. Phys. 70:5843 (1979);Adv. Chem. Phys. 47:509 (1981);Phys. Rev. B 25:830 (1982).Google Scholar
  24. 24.
    S. Mukamel,Chem. Phys. 37:33 (1979).Google Scholar
  25. 25.
    S. Mukamel,J. Stat. Phys. 27:317 (1982);30:179 (1983).Google Scholar
  26. 26.
    J. Nieuwoudt and S. Mukamel,J. Stat. Phys. 36:677 (1984).Google Scholar
  27. 27.
    S. Mukamel,Phys. Rep. 93:1 (1982).Google Scholar
  28. 28.
    S. Mukamel and D. Grimbert,Opt. Commun. 40:421 (1982).Google Scholar
  29. 29.
    A. Royer,Phys. Rev. A 6:1741 (1972);22:1625 (1980);J. Math. Phys. 24:380 (1983).Google Scholar
  30. 30.
    R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).Google Scholar
  31. 31.
    S. Mukamel,J. Stat. Phys. 30:179 (1983).Google Scholar
  32. 32.
    H. Mori, T. Morita, and K. T. Mashiyama,Progr. Theor. Phys. 63:1865 (1980).Google Scholar
  33. 33.
    S. Chaturvedi and F. Shibata,Z. Phys. B 35:297 (1979).Google Scholar
  34. 34.
    S. Chaturvedi,Z. Phys. B 51:271 (1983).Google Scholar
  35. 35.
    R. Kubo,J. Math. Phys. 4:174 (1963).Google Scholar
  36. 36.
    N. G. van Kampen,Physica 74:215, 239 (1974).Google Scholar
  37. 37.
    R. F. Fox,J. Math. Phys. 20:2467 (1979);Phys. Rep. 48C:179 (1978).Google Scholar
  38. 38.
    R. F. Fox,Phys. Lett. 94A:281 (1983).Google Scholar
  39. 39.
    L. Garrido and J. M. Sancho,Physica 115A:479 (1982).Google Scholar
  40. 40.
    R. Der,ZfI-Mitteilungen, Vol. 79 (1983).Google Scholar
  41. 41.
    R. Der,Physica 132A:47 (1985).Google Scholar
  42. 42.
    B. J. Berne, inStatistical Mechanics, Part B, B. J. Berne, ed. (Plenum Press, New York, 1977).Google Scholar
  43. 43.
    D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).Google Scholar
  44. 44.
    R. Der and C. Webers,Physica 132A:94 (1985).Google Scholar
  45. 45.
    H. D. Zeh,Lecture Notes in Physics, Vol. 200 (1984), p. 36.Google Scholar
  46. 46.
    L. S. Garcia-Colin, M. Lopez de Haro, R. F. Rodriquez, J. Casas-Vázquez, and D. Jou,J. Stat. Phys. 37:465 (1984).Google Scholar
  47. 47.
    I. Prigogine,Non-Equilibrium Statistical Mechanics (Interscience, New York, 1962).Google Scholar
  48. 48.
    Yu. L. Klimontovich,Kinetic Theory of Nonideal Gases and Plasmas (Nauka, Moscow, 1975).Google Scholar
  49. 49.
    D. Jou, J. E. Llebot, and J. Casas-Vázquez,Phys. Rev. A 25:508 (1982), and references therein.Google Scholar
  50. 50.
    E. T. Whittaker and G. N. Watson,A Course of Modern Analysis (Cambridge University Press, 1962).Google Scholar
  51. 51.
    I. I. Priwalow,Einführung in die Funktionstheorie (B. G. Teubner, Leipzig, 1969), §2.8.Google Scholar
  52. 52.
    B. Grigolini and F. Marchesoni,Adv. Chem. Phys. LXII:29 (1986).Google Scholar
  53. 53.
    R. Der and W. Schumacher, in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • R. Der
    • 1
  1. 1.Zentralinstitut für Isotopen- und StrahlenforschungLeipzigGerman Democratic Republic

Personalised recommendations