Journal of Statistical Physics

, Volume 11, Issue 3, pp 257–275 | Cite as

Initial condition effects for a Brownian particle in a harmonic chain

  • James T. Hynes
Articles

Abstract

The influence of initial deviations from bath equilibrium on the motion of a Brownian particle in a harmonic chain is investigated by exact calculation. These initial condition effects, which are excluded by convention in standard projection operator treatments of relaxation processes, are found to be relatively long-lived, contrary to usual assumption. For weak, localized initial deviations from bath equilibrium these effects on the motion are small in magnitude and may be accounted for by a modified initial condition on the particle velocity. For initial deviations involving many bath particles these effects are more substantial and retention of their time dependence in the particle equation of motion is generally required.

Key words

Brownian motion linear harmonic chain Langevin equation velocity correlation functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. C. Hemmer,Det. Fys. Seminar i Trondheim 2 (1959).Google Scholar
  2. 2. (a)
    R. J. Rubin,J. Math. Phys. 1:309 (1960); (b)2:373 (1961); (c)Phys.Rev. 131:964 (1963).Google Scholar
  3. 3.
    F. O. Goodman,J. Phys. Chem. Solids 23:1491 (1962).Google Scholar
  4. 4.
    S. Takeno and J. Hori,Prog. Theor. Phys. (Kyoto) Suppl. 23:177 (1962); P. Mazur and E. Braun,Physica (Utr.)30:1973 (1964); P. Ullersma,Physica (Utr.)32:74 (1966)Google Scholar
  5. 5.
    J. M. Deutch and R. Silbey,Phys. Rev. A 3:2049 (1971). K. Wada and J. Hori,Prog. Theor. Phys. (Kyoto) 49:129 (1973).Google Scholar
  6. 6.
    P. Résibois,Electrolyte Theory, Harper and Row, New York (1968); U. Fano, inLectures on the Many Body Problem, E. R. Caianello, ed., Academic Press, New York (1964), Vol. 2; J. Albers and J. M. Deutch,J. Chem. Phys. 55:2613 (1971).Google Scholar
  7. 7.
    E. H. Hauge,Phys. Fluids 13:1201 (1970); M. Bixon, J. R. Dorfman, and K. C. Mo,Phys. Fluids 14:1049 (1971); J. T. Ubbink and E. H. Hauge,Physica (Utr.) 70:297 (1973)Google Scholar
  8. 8.
    J. T. Hynes,J. Chem. Phys. 59:3459 (1973).Google Scholar
  9. 9.
    S. Kashiwamura,Prog. Theor. Phys (Kyoto) 27:571 (1962);Prog. Theor. Phys. (Kyoto) Suppl. 23:207 (1962).Google Scholar
  10. 10.
    I. Fujiwara, P. C. Hemmer, and H. Wergeland,Prog. Theor. Phys. (Kyoto) Suppl. 37/38:141 (1966).Google Scholar
  11. 11.
    R. I. Cukier,Physica (Utr.) 61:321 (1972).Google Scholar
  12. 12.
    A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova,Theory of Lattice Dynamics in the Harmonic Approximation, 2nd ed., Academic Press, New York (1971).Google Scholar
  13. 13.
    H. Nakazawa,Prog. Theor. Phys. (Kyoto) Suppl. 36:172 (1966).Google Scholar
  14. 14.
    M. Abramowitz and I. A. Stegun (eds.),Natl. Bur. Std. (U.S.),Appl. Math. Ser., Vol. 55 (1964), pp. 358, 480.Google Scholar
  15. 15.
    E. L. Chang, R. M. Mazo, and J. T. Hynes,Molec. Phys., to appear.Google Scholar
  16. 16.
    R. I. Cukier, K. E. Shuler, and J. D. Weeks,J. Stat. Phys. 5:99 (1972).Google Scholar
  17. 17.
    L. B. W. Jolley,Summation of Series, Dover, New York (1961), p. 94.Google Scholar
  18. 18.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, A. Jeffrey, transi., Academic Press, New York (1965), p. 401.Google Scholar
  19. 19.
    G. Roberts and H. Kaufman,Table of Laplace Transforms (W. B. Saunders, Philadelphia, Pennsylvania (1966), p. 57.Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • James T. Hynes
    • 1
  1. 1.Department of ChemistryUniversity of ColoradoBoulder

Personalised recommendations