Skip to main content
Log in

Theory of the transmission of metal strip gratings on a dielectric substrate application to submillimeter laser coupling

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The advantages of supported metal strip gratings with respect to free-standing metal meshes are pointed out for applications as laser output couplers. A new, simple formula for the power transmission through the strip grating on a dielectric plate is derived from a line equivalent-circuit model. This formula is in good agreement with measurements performed on several samples, at different submillimeter wavelengths. An application to output couplers of far-infrared gas discharge lasers allows to improve the reliability of such lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vogel and L. Genzel, Infrared Phys.4, 257 (1964).

    Google Scholar 

  2. P.A.R. Ade, A.E. Costley, C.T. Cunningham, C.L. Mok, G.L. Neill and T.J. Parker, Infrared Phys.19, 599 (1979).

    Google Scholar 

  3. J.P. Auton, Appl. Opt.6, 1023 (1967).

    Google Scholar 

  4. A.E. Costley, K.H. Hursey, G.F. Neill and J.W.M. Ward, J. Opt. Soc. Am.67, 979 (1977).

    Google Scholar 

  5. C.L. Mok, W.G. Champers, T.J. Parker and A.E. Costley, Infrared Phys.19, 437 (1979).

    Google Scholar 

  6. A. Mitsuihi, Y. Otsuka, S. Fujita and H. Yoshinaga, Jpn. J. Appl. Phys.9, 574 (1963).

    Google Scholar 

  7. R. Ulrich, Infrared Phys.7, 65 (1967).

    Google Scholar 

  8. G.M. Ressler and K.D. Möller, Appl. Opt.6, 893 (1967).

    Google Scholar 

  9. R.D. Rawcliffe and C.M. Randall, Appl. Opt.6, 1353 (1967).

    Google Scholar 

  10. R.J. Bell, H.V. Romero and J.M. Blea, Appl. Opt.9, 2350 (1970).

    Google Scholar 

  11. G.D. Holah and S.D. Smith, J. Phys.D5, 496 (1972).

    Google Scholar 

  12. G.D. Holah and N. Morrison, J. Opt. Soc. Am.67, 971 (1977).

    Google Scholar 

  13. K. Sakai and L. Genzel, “Far Infrared Metal Mesh Filters and Fabry Perot Interferometers”, in Reviews of Infrared ans Millimeter waves, Vol. 1, K.J. Button, Ed. (Plenum, New York, 1983).

    Google Scholar 

  14. R. Ulrich, K.F. Renk and L. Genzel, IEEE Trans. Microwave Theory Tech.MTT-11, 363 (1963).

    Google Scholar 

  15. V. Ya. Balakhanov, Sov. Phys. Tech. Phys.10, 788 (1966).

    Google Scholar 

  16. R.C. Mc Phedran and D. Maystre, Appl. Phys.14, 1 (1977).

    Google Scholar 

  17. P. Belland and J.C. Lecullier, Appl. Opt.19, 1946 (1980).

    Google Scholar 

  18. W. Culshaw, IRE Trans. Microwave Theory Tech.MTT-9, 135 (1961).

    Google Scholar 

  19. R. Ulrich, T.J. Bridges and M.A. Pollack, Appl. Opt.9, 2511 (1970).

    Google Scholar 

  20. E.J. Danielewicz, T.K. Plant and T.A. De Temple, Opt. Commun.13, 366 (1975).

    Google Scholar 

  21. E.J. Danielewicz and P.D. Coleman, Appl. Opt.15, 761 (1976).

    Google Scholar 

  22. M.R. Schubert, M.S. Durschlag and T.A. De Temple, IEEE J. Quantum Electron.QE-13, 455 (1977).

    Google Scholar 

  23. D.A. Weitz, W.J. Skocpol and M. Tinkham, Opt. Lett.3, 13 (1978).

    Google Scholar 

  24. P. Belland, D. Véron and L.B. Whitbourn, J. Phys.D8, 2113 (1975).

    Google Scholar 

  25. D. Véron, P. Belland and M.J. Beccaria, Infrared Phys.18, 465 (1978).

    Google Scholar 

  26. P. Belland and D. Véron, IEEE J. Quantum Electron.QE-16, 885 (1980).

    Google Scholar 

  27. P. Belland, Appl. Phys.B27, 123 (1982).

    Google Scholar 

  28. P. Belland, Opt. Commun.44, 388 (1983).

    Google Scholar 

  29. Electroformed metal meshes are manufactured by Buckbee Mears Co, Minnesota, USA.

  30. P. Belland and D. Véron, unpublished results.

  31. P. Belland, Infrared Phys.24, 381 (1984).

    Google Scholar 

  32. J. Mendoça, Thèse Doctorat 3e cycle, Université Paris Sud (1973).

  33. P. Yeh, Opt. Commun.26, 289 (1978).

    Google Scholar 

  34. S.T. Shanahan and N.R. Heckenberg, Appl. Opt.20, 4019 (1981).

    Google Scholar 

  35. R.C. Compton, L.B. Whitbourn and R.C. Mc Phedran, Int. J. Infrared Millimeter Waves,4, 901 (1981).

    Google Scholar 

  36. R.C. Compton, L.B. Whitbourn and R.C. Mc Phedran, Appl. Opt.23, 3236 (1984).

    Google Scholar 

  37. L.B. Whitbourn and R.C. Compton, Appl. Opt.24, 217 (1985).

    Google Scholar 

  38. J. Larsen, IRE Trans. Microwave Theory Tech.10, 191 (1962).

    Google Scholar 

  39. N. Marcuwitz,Waveguide Handbook, Mc Graw-Hill Ed., (New York, 1951).

    Google Scholar 

  40. J.R. Wait, Appl. Sc. Res.B4, 393 (1954).

    Google Scholar 

  41. E.E. Russel and E.E. Bell, J. Opt. Soc. Am.57, 341 (1967).

    Google Scholar 

  42. D. Véron and L.B. Whitbourn, Appl. Opt. in press (1986).

Download references

Author information

Authors and Affiliations

Authors

Additional information

x Unité associée au CNRS. U.A. 836.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creen, J.P., Vèron, D. & Belland, P. Theory of the transmission of metal strip gratings on a dielectric substrate application to submillimeter laser coupling. Int J Infrared Milli Waves 7, 1747–1767 (1986). https://doi.org/10.1007/BF01010074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010074

Key words

Navigation